1. Guzmán KA1, Taylor MR, Banfield JF. Environmental risks of nanotechnology: National Nanotechnology Initiative funding, 2000‐2004. Environ Sci Technol. 2006; 40(5):1401‐7.
2. Simeonova PP, Opopol N, Luster MI. Nanotoxicology,i‐Toxicological lssues and Environemental Safety. Proceeding of the NATO Advanced Research Workshop on Nanotechnology_Toxicological lssues and Environemental Safety. Varna,Bulgaria. 2006.
3. Handy RD1, von der Kammer F, Lead JR, Hassellöv M, Owen R, Crane M. The ecotoxicology and chemistry of manufactured nanoparticles. Ecotoxicology. 2008; 17(4):287‐314.
4. Moore MN. Do nanoparticles present ecotoxicological risks for the health of the 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 30 60 90 120 150 mortality(%) concentration(v/v)% LC50 96h: 30.45123 1394 aquatic environment? Environ Int. 2006; 32(8):967‐76.
5. Nel A1, Xia T, Mädler L, Li N. Toxic potential of materials at the nanolevel. Science. 2006; 311(5761):622‐7.
6. EPA. Nanotechnology White Paper. U.S. Environmental Protection Agency Report EPA 100/B‐07/001, Washington DC 20460, USA. 2007.
7. Nowack B1, Bucheli TD. Occurrence, behavior and effects of nanoparticles in the environment. Environ Pollut. 2007; 150(1):5‐ 22.
8. Wang ZL. Zinc oxide nanostructures: growth, properties and applications. Journal of Physics‐Condensed Matter. 2004; 16 (25):829‐58.
9. Li M1, Lin D, Zhu L. Effects of water chemistry on the dissolution of ZnO nanoparticles and their toxicity to Escherichia coli. Environ Pollut. 2013; 173:97‐102.
10. Meulenkamp EA. Synthesis and growth of ZnO nanoparticles. J Phys Chem B. 1998; 102:5566–72.
11. Liu K, Sakurai M, Aono M. ZnO‐Based Ultraviolet Photodetectors. Sensors (Basel). 2010; 10(9):8604–34.
12. Behnajady MA1, Modirshahla N, Hamzavi R. Kinetic study on photocatalytic degradation of C.I. Acid Yellow 23 by ZnO photocatalyst. J Hazard Mater. 2006; 133(1‐3):226‐32.
13. Mortimer M1, Kasemets K, Kahru A. Toxicity of ZnO and CuO nanoparticles to ciliated protozoa Tetrahymena thermophila. Toxicology. 2010; 269(2‐3):182‐9.
14. Bauer C, Jecque P, Kalt A. Photooxidation of an azo dye induced by visible light incident on the surface of TiO2. J Photochem Photobiol A: Chem. 2001; 140(1): 87–92.
15. Houas A, Lachheb H, Ksibi M, Elaloui E, Guillard C, Herrmann JM. Photocatalytic degradation pathway of methylene blue in water. Appl Catal B: Environ. 2001; 31:145–5.
16. Sauer T, Cesconeto Neto G, Jose HJ, Moreira RFPM. Kinetics of photocatalytic degradation of reactive dyes in a TiO2 slurry reactor. J Photochem Photobiol A: Chem. 2002; 149:147–54.
17. So CM, Cheng MY, Yu JC, Wong PK. Degradation of azo dye Procion Red MX‐5B by photocatalytic oxidation. Chemosphere. 2002; 46:905–912.
18. Stolz A. Basic and applied aspects in the microbial degradation of azo dyes. Appl Microbiol Biotechnol. 2001; 56(1‐2):69‐80.
19. Xu XR, Li HB, Wang WH, Gu JD. Degradation of dyes in aqueous solutions by the Fenton process. Chemosphere. 2004; 57(7):595‐ 600.
20. Pearce CI, Lloyd JR, Guthrie JT. The removal of color from textile wastewater using whole bacterial cells: A review. Dyes Pigm. 2003; 58:179–96.
21. Spadaro JT, Isabelle L, Renganathan V. Hydroxyl radical mediated degradation of azo dyes‐ Evidence for benzene generation. Environ Sci Technol. 1994; 28(7):1389‐93.
22. Chakrabarti S1, Dutta BK. Photocatalytic degradation of model textile dyes in wastewater using ZnO as semiconductor catalyst, J. Hazard. Mater. 2004;B 112 269– 278.
23. Chakrabarti S1, Dutta BK. Photocatalytic degradation of isothiazolin‐3‐ons in water and emulsion paints containing nanocrystalline TiO2 and ZnO catalysts. J Hazard Mater. 2004; 112(3):269‐78.
24. Herrmann JM, Guillard C, Pichat P. Heterogeneous photocatalysis: an emerging technology for water treatment. Catalysis Today. 1993; 17(1‐2):7‐20.
25. Legrini O, Oliveros E, Braun AM. Photochemical Processes for Water Treatment. Chem Rev. 1993; 93:671‐98.
26. Yeber MC1, Rodríguez J, Freer J, Durán N, Mansilla HD. Photocatalytic degradation of cellulose bleaching effluent by supported TiO2 and ZnO. Chemosphere. 2000; 41(8):1193‐7.
27. Lin HF, Liao SC, Hung SW. The dc thermal plasma synthesis of ZnO nanoparticles for visible‐light photocatalyst. J Photochem Photobiol A: Chem. 2005; 174(1):82–7.
28. Sakthivel S, Neppolian B, Shankar MV, Arabindoo B, Palanichamy M,
29. Murugesan V. Solar photocatalytic degradation of azo dye: comparison of photocatalytic efficiency of ZnO and TiO2. Sol Energy Mater and Sol Cel. 2003; 77(1):65–82.
30. Wanga H, Xiea C, Zhanga W, Caib S, Yanga Z, Guib Y. Comparison of dye degradation efficiency using ZnO powders with various size scales. J Hazard Mater. 2007; 141(1):645‐52.
31. APHA,AWWA,WEF. Standard methods for the examination of water and wastewater. 21st Editions,Washigton.2005. 32. Munzinger A, Monicelli F. A comparison of the sensivity of three Daphnia Magna populatios under chronic heavy metal stress. Ecotoxicol Environ Saf. 1991; 22(1):24‐31.
33. Lavens P, Sorgeloos P. Manual on the protection and use of live food for acuaculture. FAO fisheries Technical Paper.1996;NO.361,FAO,Rome.
34. U.S.Environmental Protection Agency. Methods for measuring the acute toxicity of effluents and receiving waters to fresh water and marine organisms, Fifth Edition,EPA‐821‐R‐02‐012. 2007.
35. Fernández‐Alba AR1, Hernando D, Agüera A, Cáceres J, Malato S.Toxicity assays: a way for evaluating AOPs efficiency. Water Res. 2002; 36(17):4255‐62.
36. Immich AP1, Ulson de Souza AA, Ulson de Souza SM. Removal of Remazol Blue RR dye from aqueous solutions with Neem leaves and evaluation of their acute toxicity with Daphnia magna. J Hazard Mater. 2009; 164(2‐3):1580‐5.
37. Villegas‐Navarro A, Gonzalez MCR, Lopez ER, Aguilar RD, Marcal WS. Evaluation of Daphnia magna as an indicator of toxicity and treatment efficacy of textile wastewaters. Environment International. 1999; 25(5):619‐24.
38. Tatjana T, and Agora‐Konan J. Toxicity evaluation of waste from the pharmaceutical industry to aquatic organisms. Wat Sci Tech. 1999; 39(10‐ 11):71‐6.
39. Kasemets K, Ivask A, Dubourguier HC, Kahru A. Toxicity of nanoparticles of ZnO, CuO and TiO2 to yeast Saccharomyces cerevisiae. Toxicol in Vitro. 2009; 23(6):1116‐22.
40. Bystrzejewska‐Piotrowska G, Golimowski J, Urban PL. Nanoparticles: their potential toxicity, waste and environmental management. Waste Manag. 2009; 29(9):2587‐95.
41. Lockman PR, Oyewumi MO, Koziara JM, Roder KE, Mumper RJ, Allen DD. Brain uptake of thiamine‐coated nanoparticles. J Control Release. 2003; 93(3):271‐82.
42. Villegas‐Navarro A1, Ramírez‐M Y, Salvador‐ S MS, Gallardo JM. Determination of wastewater Lc50 on the different process stages of the textill industry. Ecotoxicol Environ Saf. 2001; 48(1):56‐61.
43. Dave G1, Aspegren P. Comparative study of leachates from 52 textiles to Daphnia magna. Ecotoxicol Environ Saf. 2010; 73(7):1629‐32.
44. Yan G, Chen D, Hua Z. Roles of H2O2 and OH radical in bactericidal, action of immobilized TiO2 thin_film reactor: An ESR study. J Photochem Photobiol A: Chem. 2009; 207(2‐ 3):153‐9.
45. Baveye P, Laba M. Aggregation and Toxicology of Titanium Dioxide Nanoparticles. Environ Health Perspect. 2008; 116(4): A152.
46. Heinlaan M, Ivask A, Blinova I, Dubourguier HC, Kahru A. Toxicity of nanosized and bulk ZnO, CuO and TiO2 to bacteria Vibrio fischeri and crustaceans Daphnia magna and Thamnocephalus platyurus. Chemosphere. 2008; 71(7): 1308‐16.
47. Dehghani MH, Nasseri S, Mahdavi P, Mahvi AH, Naddafi K, Jahed GR. Evaluation of Acid 4092 Dye Solution Toxicity After UV/ZnO Mediated Nanophotocatalysis Process Using Daphnia Magna Bioassay (Persian). J Color Sci Tech. 2012; 5(4):285‐92.