تعهد نامه

نوع مقاله : مقالات پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد انرژی‌های تجدیدپذیر، گروه مهندسی مکانیک، دانشکده مهندسی، دانشگاه جهرم، جهرم، ایران

2 دانشیار گروه مهندسی مکانیک بیوسیستم، دانشکده کشاورزی، دانشگاه جهرم، جهرم، ایران.

چکیده

زمینه و هدف: ایران یکی از کشورهای دارای نخلستان‌های فراوان است و بایستی به‌دنبال راهکارهای مناسب در جهت استفاده از ضایعات لیگنوسلولزی درخت نخل باشیم. در این راستا پتانسیل تولید بیوگاز از ضایعات برگ درخت نخل به‌عنوان یک منبع در دسترس و بومی کشور بسیار ضروری است.

مواد و روش‌ها: اثر ترکیبی درصد اسیدسولفوریک در چهار سطح و زمان پیش‌فرآوری در دو سطح مورد بررسی قرار گرفت. هم‌چنین اثر ترکیبی زمان ازن‌دهی در سه سطح و میزان رطوبت برگ درخت نخل در دو سطح بررسی گردید. تمامی آزمایشات در میزان بیوگاز و متان تولیدی بر مبنای فاکتوریل انجام شد و اثرات ساده و ترکیبی عوامل با نرم‌افزار SPSS 22 و آزمون دانکن تجزیه و تحلیل گردید.  

یافته‌ها: حداکثر مقدار تولید روزانه بیوگاز با غلظت 1% اسید 540 میلی‌لیتر در لیتر و با 4 ساعت ازن‌زنی 440 میلی‌لیتر در لیتر به‌دست آمد. بر طبق مقدار متان تجمعی تولیدشده و مقدار مواد جامد فرار کاهش یافته می‌توان گفت که با بهترین پیش‌فرآوری اسیدی می‌توان حدود 374 میلی‌لیتر در گرم VS و 173 میلی‌لیتر در گرم VS بیوگاز و متان خالص تولید کرد. در مقایسه با بهترین پیش‌فرآوری ازن می‌توان حدود 175 میلی‌لیتر در گرم VS و 64 میلی‌لیتر در گرم VS بیوگاز و متان خالص دست یافت. 

نتیجه‌گیری: از منابع لیگنوسلولزی برگ‌های درخت نخل به‌خوبی می‌توان با پیش‌فرآوری مناسب در جهت تولید انرژی اقدام نمود. تحقیقات بیشتری در جهت ارزیابی روش‌های دیگر پیش‌فرآوری نیز ضروری است تا بهترین روش با بالاترین بازده تولید بیوگاز از این منبع ارزان و در دسترس به‌دست آید.  

کلیدواژه‌ها

عنوان مقاله [English]

Investigation of Biogas Production from Palm Tree Leaf Using Dilute Acid and Ozone Pretreatment

نویسندگان [English]

  • Maryam Keshaii Jahromi 1
  • Ehsan Houshyar 2

1 M.Sc. Student, Department of Mechanical Engineering, Faculty of Engineering, Jahrom University, P.O. Box 74135-111, Jahrom, Iran.

2 Department of Biosystems Engineering, Faculty of Agriculture, Jahrom University, P.O. Box 74135-111, Jahrom, Iran

چکیده [English]

Background and Objective: Iran is one of the countries with abundant palm groves, and we must look for appropriate solutions to use palm tree lignocellulosic waste. In this regard, the potential for biogas production from palm tree leaf waste is very important as an accessible and indigenous source in the country.

Materials and methods: The combined effects of sulfuric acid percentage were studied at four levels, and the pretreatment time at two levels. Also, the combined impact of ozonation time was studied at three levels, and the moisture content of palm tree leaves was studied at two levels. All experiments on the amount of biogas and methane produced were conducted based on a factorial design. The main and interaction effects of the factors were analyzed using SPSS 22 software and Duncan's test.

Results: The maximum daily biogas production reached 540 ml/L with 1% acid concentration and 440 ml/L with 4 hours of ozonation. Based on the cumulative methane produced and the amount of volatile solids (VS) reduced, the best acid pretreatment can yield approximately 374 ml/gr VS of biogas and 173 ml/gr VS of pure methane. In comparison, the best ozone pretreatment can produce around 175 ml/gr VS of biogas and 64 ml/gr VS of pure methane.
 
Conclusion: The lignocellulosic biomass of palm tree leaves can be effectively used for energy production with appropriate pretreatment. Further research is essential to evaluate alternative pretreatment methods to determine the best approach to maximize biogas yield from this affordable and readily available resource.
 
Open Access Policy: This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/

کلیدواژه‌ها [English]

  • Biogas
  • Methane
  • Anaerobic Digestion
  • Lignocellulosic Wastes
  • Renewable Energy
  • Palm Tree
  1. Djaafri M, Kalloum S, Soulimani AE, Khelafi M. Bioconversion of Dried Leaves from Algerian Date Palm (Phoenix dactylifera L.) to Biogas by Anaerobic Digestion. International Journal of Engineering Research in Africa 2019; 41: 131-144. https://doi.org/10.4028/www.scientific.net/JERA.41.131
  2. Pasciucco, F., Francini, G., Pecorini, I., Baccioli, A., Lombardi, L., Ferrari, L. Valorization of biogas from the anaerobic co-treatment of sewage sludge and organic waste: Life cycle assessment and life cycle costing of different recovery strategies. Journal of Cleaner Production. 2023; 401, 136762. https://doi.org/10.1016/j.jclepro.2023.136762
  3. Chao CCT, Krueger RR. The date palm (Phoenix dactylifera L.): Overview of biology, uses, and cultivation. HortScience 2007; 42: 1077-1082. https://doi.org/10.21273/HORTSCI.42.5.1077
  4. Grobelak, A., Bień, B., Sławczyk, D., & Bień, J. Conditioning Biomass for Biogas Plants: Innovative Pre-Treatment and Digestate Valorization Techniques to Enhance Soil Health and Fertility. Sustainability, 2025; 17(8), 3289. https://doi.org/10.3390/su17083289
  5. Zin El-Abedin, T., Rezk, H. A., Kassem, A. S., Hemeda, S. G., & Omara, A. I. Effect of ultrasonic pretreatment of cow manure on biogas production using an up-flow anaerobic sludge blanket reactor. Misr Journal of Agricultural Engineering, 2024; 42(1), 113-128.
  6. Taherdanak M, Zilouei H. Karimi K. The influence of dilute sulfuric acid pretreatment on biogas production from wheat plant. International Journal of Green Energy 2016; 13(11): 1129-1134. https://doi.org/10.1080/15435075.2016.1175356
  7. Syaichurrozi I, Villta PK, Nabilah N, Rusdi R. Effect of sulfuric acid pretreatment on biogas production from Salvinia molesta. Journal of Environmental Chemical Engineering 2019; 7(1): 102857. https://doi.org/10.1016/j.jece.2018.102857
  8. Hassaan MA, El Nemr A, Elkatory MR, Eleryan A, Ragab S, El Sikaily A, Pantaleo A. Enhancement of Biogas Production from Macroalgae Ulva latuca via Ozonation Pretreatment. Energies 2021; 14(6): 1703. https://doi.org/10.3390/en14061703
  9. Hodaei M, Ghasemi S, Khosravi A, Vossoughi M. Effect of the ozonation pretreatment on biogas production from waste activated sludge of Tehran wastewater treatment plant. Biomass & Bioenergy 2021; 152: 106198. https://doi.org/10.1016/j.biombioe.2021.106198
  10. Silva Jose D, Tawai A, Divakaran D, Sriariyanun M, Phakeenuya V, Cheng YS, Tantayotai P. Influence of Acetic Acid Pretreatment and its Residue on Bioethanol and Biogas Production from Water Hyacinth. Applied Science and Engineering Progress 2024; 17(3):1-13.
  11. Mahmoodi-Eshkaftaki M, Houshyar E. Biogas recirculation technology: Effect on biogas purification, slurry characteristics, microbial activity and energy consumption. Environmental Technology & Innovation 2020; 19: 100867. https://doi.org/10.1016/j.eti.2020.100867
  12. Shitophyta, L. M., Cahyaningtyas, Z. L., Syifa, N. A., & Chusna, F. M. A. Various Types of Acids on Pretreatment of Corn Stover for Enhancing Biogas Yield. JTERA (Jurnal Teknologi Rekayasa), 2022; 7(2), 275. https://doi.org/10.31544/jtera.v7.i2.2022.275-280
  13. APHA. Standard methods for the examination of water and wastewater, 23rd ed. American Public Health Association. 2017;Washington DC
  14. Chinwendu D, Sunkanmi F, Joshua O, Blessing O. Investigating the Synergistic Effect of Temperature and pH Dynamics on Biogas Yield from Lignocellulosic Biomass Codigested with Cow dung. Journal of Advances in Microbiology 2024; 24(12): 139-162. https://doi.org/10.9734/jamb/2024/v24i12879
  15. Nugraha WD, Keumala CF, Matin HHA. The Effect of Acid Pre-Treatment using Acetic Acid and Nitric Acid in The Production of Biogas from Rice Husk during Solid State Anaerobic Digestion (SS-AD) 2018; 31: 01006. https://doi.org/10.1051/e3sconf/20183101006
  16. Tian Y, Zhang H, Mi X, Wang L, Zhang L, Ai Y. Research on anaerobic digestion of corn stover enhanced by dilute acid pretreatment: Mechanism study and potential utilization in practical application. Journal of Renewable and Sustainable Energy 2016; 8(2): 023103. https://doi.org/10.1063/1.4945570
  17. Liu Y, Wang X, Chang C, Li X, Zhang D. Reuse of Digestate from Anaerobic Digestion of Organic Waste: Enhancement of Biogas Production Using Ozonation. Environmental Engineering Science 2024; 41(3): 120-129. https://doi.org/10.1089/ees.2023.0238
  18. Le TM, Vo P T, Do TA, Tran LT, Truong HT, Le TTX, Chen YH, Chang CC, Chang CY, Tran QT, Thanh T, Do MV. Effect of Assisted Ultrasonication and Ozone Pretreatments on Sludge Characteristics and Yield of Biogas Production 2019; 7(10): 743. https://doi.org/10.3390/pr7100743
  19. Ali HA, Faraj JJ, Hussien FM. Effect of pH on biogas production during anaerobic digestion. Journal of the University of Shanghai for Science and Technology 2021; 23(08): 224-231. https://doi.org/10.51201/JUSST/21/08369
  20. Ahmadi Pirlou M, Mesri Gundoshmian T. Evaluating the Effect of Alkaline Pretreatment on Improvement of Biomethane Production from Anaerobic Digestion of Mixed Municipal Waste and Sewage Sludge. Iranian Journal of Research in Environmental Health. 2021; 7(1): 53-66.
  21. Jankovičová B, Hutňan M, Nagy Czölderová M, Hencelová K, Imreová Z. Comparison of acid and alkaline pre-treatment of lignocellulosic materials for biogas production. CAAS Agricultural Journals. 2022; 68(4): 195-204. https://doi.org/10.17221/421/2021-PSE
  22. Wicaksono A, Rahmawan A, Abdul Matin HH, Wardani LGK, Kusworo TD, Sumardiono S. The effect of pretreatment using sodium hydroxide and acetic acid to biogas production from rice straw waste 2017; 101: 02011. https://doi.org/10.1051/matecconf/201710102011
  23. Al-Juhaimi FY, Hamad SH, Al-Ahaideb IS, Al-Otaibi MM, Ghafoor K, Abbasi T, Abbasi SA. Biogas Production through the Anaerobic Digestion of Date Palm Tree Wastes - Process Optimization. Bioresources 2014; 9(2): 3323-3333. https://doi.org/10.15376/biores.9.2.3323-3333
  24. Rafique R, Poulsen TG, Nizami AS, Asam ZZ, Murphy JD, Kiely G. Effect of thermal, chemical and thermo-chemical pre-treatments to enhance methane production. Energy 2010; 35: 4556-61. https://doi.org/10.1016/j.energy.2010.07.011
  25. Xu J, Yuan H, Lin J. Evaluation of thermal, thermal-alkaline, alkaline and electrochemical pretreatments on sludge to enhance anaerobic biogas production. Journal of the Taiwan Institute of Chemical Engineers. 2014; 45(5): 2531-36 https://doi.org/10.1016/j.jtice.2014.05.029