تعهد نامه

نوع مقاله : مقالات مروری روایی و یکپارچه

نویسندگان

1 دانشیار مهندسی محیط زیست، گروه بهداشت محیط، دانشکده بهداشت مرکز تحقیقات آلاینده‌های محیطی، دانشگاه علوم پزشکی قم، قم، ایران.

2 استادیار آمار زیستی، گروه آمار زیستی و اپیدمیولوژی، دانشکده بهداشت، دانشگاه علوم پزشکی قم، قم، ایران.

3 دکترای بهداشت و ایمنی مواد غذایی، مرکز تحقیقات آلاینده‌های محیطی، دانشگاه علوم پزشکی قم، قم، ایران.

چکیده

زمینه و هدف: آکریلامید به‌عنوان یک آلاینده نوظهور در اثر واکنش میلارد میان قندهای کاهنده و آسپاراژین در دمای بالا در موادغذایی تشکیل می‌شود. این ترکیب به شکل پلی‌آکریل‌آمیدها در صنایعی مانند تصفیه آب، حفاری و کشاورزی، به یک نگرانی جهانی در حوزه‌ی ایمنی غذایی و آلودگی‌های زیست‌محیطی تبدیل شده است. هدف مطالعه‌ی حاضر ارائه مروری نقلی بر حضور آکریلامید در مواد غذایی، بررسی مخاطرات بالقوه آن برای سلامت انسان و محیط زیست و تحلیل راهکارهای موجود و نوین برای شناسایی، کاهش و کنترل این ترکیب می‌باشد.

مواد و روش‌ها: در این مطالعه‌ی مروری، با رویکردی جامع، به بررسی منابع و مکانیسم‌ تشکیل آکریلامید، مسیرهای آلودگی محیطی، اثرات بهداشتی و زیست‌محیطی و روش‌های شناسایی آن پرداخته شد. هم‌چنین فناوری‌ها و راهکارهای کاهش آکریلامید ازجمله جعبه‌ابزار آکریلامید و اصلALARA، مورد بررسی قرار گرفت.

یافته ها: آکریلامید دارای پتانسیل سرطان‌زایی، سمیت عصبی، ژنوتوکسیک و اختلال در تولیدمثل است و حضور آن در زنجیره‌ی غذایی و منابع آب، خطری جدی برای سلامت عمومی به‌شمار می‌آید. یافته‌ها نشان می‌دهد برای کنترل اثربخش این آلاینده، نیاز به هماهنگی و مشارکت بین سیاست‌گذاران، صنایع غذایی، محققان و نهادهای نظارتی، تدوین و استقرار استانداردهای به‌روز و بهره‌گیری از جدیدترین دستاوردهای علمی وجود دارد.

نتیجه‌گیری: مدیریت مؤثر آکریلامید نیازمند رویکردی چندبعدی مبتنی بر همکاری میان بخش‌های علمی، صنعتی و نظارتی است. استفاده از دانش روز، استقرار استانداردهای بین‌المللی و به‌کارگیری فناوری‌های نوین می‌تواند به کاهش معنادار مواجهه انسانی و حفظ سلامت عمومی کمک کند.

کلیدواژه‌ها

عنوان مقاله [English]

Acrylamide in Food and the Environment: A Narrative Review on Sources, Identification, Analytical methods, and Control

نویسندگان [English]

  • Mahdi Asadi-Ghalhari 1
  • Mohammad Ebrahim Ghafari 2
  • Ali Salehi 3

1 Associate Professor of Environmental Engineering, Department of Environmental Health, Research Center for Environmental Pollutants, Qom University of Medical Sciences, Qom, Iran

2 Assistant Professor of Biostatistics, Department of Biostatistics and Epidemiology, School of Health, Qom University of Medical Sciences, Qom, Iran

3 Phd in Food Safety and Hygiene, Research Center for Environmental Pollutants, Qom University of Medical Sciences, Qom, Iran

چکیده [English]

Background and Objective: Acrylamide, as one of the emerging contaminants in food and the environment, has become a global concern in the field of food safety and human health. It is primarily formed by the Maillard reaction between reducing sugars and the asparagine under high temperatures. Additionally, the widespread use of polyacrylamides (PAMs) in various industries, including water treatment, drilling, and agriculture, has led to increased environmental pollution. The aim of the present study is to narrative review of the presence of acrylamide in food, examine its possible risks to human health and the environment, and review the current and novel strategies for its detection, reduction, and control.

Materials and Methods: In this review study, a comprehensive approach was adopted to examine the sources and mechanisms of acrylamide formation, environmental contamination pathways, health and environmental effects, and its detection methods (such as GC-MS and LC-MS). Moreover, relevant technologies and mitigation strategies such as the Acrylamide Toolbox and the ALARA principle were discussed.

Results: Acrylamide possesses carcinogenic, neurotoxic, genotoxic, and reproductive toxicity potential, and its presence in the food supply and water sources poses a major threat to public health. The findings indicate that controlling this contaminant involves significant coordination among policymakers, the food industry, scientists, and regulatory agencies, along with the creation and enforcement of contemporary benchmarks and the application of cutting edge scientific innovations. 

Conclusion: Effective management of acrylamide requires an integrated collaborative approach involving scientific, industrial, and regulatory frameworks. Constructing proper frameworks of collaboration can greatly aid public health through reduced exposure if knowledge, international standards, and new technologies are properly applied.
 
Open Access Policy: This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/

کلیدواژه‌ها [English]

  • Acrylamide
  • Emerging Contaminant
  • Food Safety
  • Environmental Hazards
  • Acrylamide Toolbox
  • LC-MS
  • GC-MS
  • ALARA Principle
  1. Kaur, N. and N.G. Halford, Reducing the risk of acrylamide and other processing contaminant formation in wheat products. Foods, 2023. 12(17): p. 3264. https://doi.org/10.3390/foods12173264 PMid:37685197 PMCid:PMC10486470
  2. Barroso, P.J., et al., Emerging contaminants in the atmosphere: Analysis, occurrence and future challenges. Critical Reviews in Environmental Science and Technology, 2019. 49(2): p. 104-171. https://doi.org/10.1080/10643389.2018.1540761
  3. Xu, X., et al., The relationship between acrylamide and neurodegenerative diseases: gut microbiota as a new intermediate cue. Critical Reviews in Food Science and Nutrition, 2024: p. 1-13.
  4. Maan, A.A., et al., Acrylamide formation and different mitigation strategies during food processing-a review. Food reviews international, 2022. 38(1): p. 70-87. https://doi.org/10.1080/87559129.2020.1719505
  5. Bušová, M., et al., Occurrence of acrylamide in selected food products. Central European journal of public health, 2020. 28(4): p. 320-324. https://doi.org/10.21101/cejph.a6430 PMid:33338370
  6. Pogurschi, E.N., et al., Determination of Acrylamide in Selected Foods from the Romanian Market. Foods, 2021. 10(9): p. 2110. https://doi.org/10.3390/foods10092110 PMid:34574220 PMCid:PMC8472652
  7. Jamshidian, M. and B. Maehrani, Determination of acrylamide content in the Iranian potato chips by gas chromatography-mass spectroscopy. 2012.
  8. Naiel, M.A., et al., Acrylamide toxicity in aquatic animals and its mitigation approaches: an updated overview. Environmental Science and Pollution Research, 2023. 30(53): p. 113297-113312. https://doi.org/10.1007/s11356-023-30437-4 PMid:37867167 PMCid:PMC10721689
  9. Halford, N.G., et al., The acrylamide problem: a plant and agronomic science issue. Journal of experimental botany, 2012. 63(8): p. 2841-2851. https://doi.org/10.1093/jxb/ers011 PMid:22345642
  10. Pizzorusso, G., et al., Physicochemical characterization of acrylamide/bisacrylamide hydrogels and their application for the conservation of easel paintings. Langmuir, 2012. 28(8): p. 3952-3961. https://doi.org/10.1021/la2044619 PMid:22272976
  11. Tepe, Y., Acrylamide in surface and drinking water, in Acrylamide in Food. 2024, Elsevier. p. 285-305. https://doi.org/10.1016/B978-0-323-99119-3.00011-4
  12. Al-Kindi, S., et al., Partially hydrolyzed polyacrylamide: enhanced oil recovery applications, oil-field produced water pollution, and possible solutions. Environmental Monitoring and Assessment, 2022. 194(12): p. 875. https://doi.org/10.1007/s10661-022-10569-9 PMid:36227428 PMCid:PMC9558033
  13. Godwin Uranta, K., et al., Studying the effectiveness of polyacrylamide (PAM) application in hydrocarbon reservoirs at different operational conditions. Energies, 2018. 11(9): p. 2201. https://doi.org/10.3390/en11092201
  14. Hasan, G.A., A.K. Das, and M.A. Satter, Detection of acrylamide traces in some commonly consumed heat-treated carbohydrate-rich foods by GC-MS/MS in Bangladesh. Heliyon, 2022. 8(10). https://doi.org/10.1016/j.heliyon.2022.e11092 PMid:36276720 PMCid:PMC9583123
  15. Karami, M., et al., Determination and health risk assessment of acrylamide levels in instant coffee products available in Tehran markets by GC-MS. International Journal of Environmental Analytical Chemistry, 2024. 104(13): p. 3016-3025. https://doi.org/10.1080/03067319.2022.2076225
  16. AL-Hammadi, M.M., et al., Optimization, validation, and application of a quantitative gc/npd method for acrylamide determination in yemeni fried fish samples. Sana'a University Journal of Applied Sciences and Technology, 2023. 1(4). https://doi.org/10.59628/jast.v1i4.698
  17. Skinner, M.M., et al., Instrumentation for routine analysis of acrylamide in French fries: assessing limitations for adoption. Foods, 2021. 10(9): p. 2038. https://doi.org/10.3390/foods10092038 PMid:34574148 PMCid:PMC8469642
  18. Desmarchelier, A., et al., Towards a consensus LC-MS/MS method for the determination of acrylamide in food that prevents overestimation due to interferences. Food Additives & Contaminants: Part A, 2022. 39(4): p. 653-665. https://doi.org/10.1080/19440049.2021.2022773 PMid:35113763
  19. Talaviya, H., et al., Development and validation of LC-MS/MS method for trace analysis of acrylamide, acrylic acid and N, N-methylene bis acrylamide in sandy loam soil. Journal of Chromatography A, 2024. 1729: p. 465012. https://doi.org/10.1016/j.chroma.2024.465012 PMid:38852264
  20. Prata, R., et al., Determination of acrylamide in commercial baby foods by LC-QqQ-MS/MS: a simple method for routine analyses. Food Analytical Methods, 2023. 16(8): p. 1413-1421. https://doi.org/10.1007/s12161-023-02510-8
  21. Jana, A., et al., Recent advances in L-Asparaginase enzyme production and formulation development for acrylamide reduction during food processing. Food Chemistry: X, 2024: p. 102055. https://doi.org/10.1016/j.fochx.2024.102055 PMid:39758072 PMCid:PMC11696629
  22. Calabrese, M., et al., Reducing the acrylamide concentration in homemade bread processed with L-asparaginase. Lwt, 2024. 209: p. 116770. https://doi.org/10.1016/j.lwt.2024.116770
  23. Aafria, S. and M. Sharma, Development of a rapid and ultrasensitive acrylamide nanosensor based on TiO2 NPs/GQDs nanocomposite. Journal of Food Composition and Analysis, 2025. 140: p. 107188. https://doi.org/10.1016/j.jfca.2025.107188
  24. Zyzak, D.V., et al., Acrylamide formation mechanism in heated foods. Journal of agricultural and food chemistry, 2003. 51(16): p. 4782-4787. https://doi.org/10.1021/jf034180i PMid:14705913
  25. Schouten, M.A., S. Tappi, and S. Romani, Acrylamide in coffee: formation and possible mitigation strategies-a review. Critical reviews in food science and nutrition, 2020. 60(22): p. 3807-3821. https://doi.org/10.1080/10408398.2019.1708264 PMid:31905027
  26. Perera, D.N., G.G. Hewavitharana, and S. Navaratne, Comprehensive study on the acrylamide content of high thermally processed foods. BioMed Research International, 2021. 2021(1): p. 6258508. https://doi.org/10.1155/2021/6258508 PMid:33681355 PMCid:PMC7925045
  27. Wang, Y., et al., pH and lipid unsaturation impact the formation of acrylamide and 5-hydroxymethylfurfural in model system at frying temperature. Food Research International, 2019. 123: p. 403-413. https://doi.org/10.1016/j.foodres.2019.05.001 PMid:31284992
  28. Mollakhalili-Meybodi, N., et al., Acrylamide in bread: a review on formation, health risk assessment, and determination by analytical techniques. Environmental Science and Pollution Research, 2021. 28(13): p. 15627-15645. https://doi.org/10.1007/s11356-021-12775-3 PMid:33548042
  29. Sáez-Hernández, R., et al., Determination of acrylamide in toasts using digital image colorimetry by smartphone. Food Control, 2022. 141: p. 109163. https://doi.org/10.1016/j.foodcont.2022.109163
  30. Liyanage, D.W., et al., Processing strategies to decrease acrylamide formation, reducing sugars and free asparagine content in potato chips from three commercial cultivars. Food control, 2021. 119: p. 107452. https://doi.org/10.1016/j.foodcont.2020.107452
  31. Tepe, Y. and A. Çebi, Acrylamide in environmental water: a review on sources, exposure, and public health risks. Exposure and Health, 2019. 11(1): p. 3-12. https://doi.org/10.1007/s12403-017-0261-y
  32. Yaylayan, V.A. and R.H. Stadler, Acrylamide formation in food: a mechanistic perspective. Journal of AOAC International, 2005. 88(1): p. 262-267. https://doi.org/10.1093/jaoac/88.1.262 PMid:15759750
  33. Nematollahi, A., et al., Acrylamide content of collected food products from Tehran's market: A risk assessment study. Environmental science and pollution research, 2020. 27(24): p. 30558-30570. https://doi.org/10.1007/s11356-020-09323-w PMid:32468359
  34. Koh, B.-K., Determination of acrylamide content of food products in Korea. Journal of the Science of Food and Agriculture, 2006. 86(15): p. 2587-2591. https://doi.org/10.1002/jsfa.2652
  35. Arisseto, A.P., et al., Determination of acrylamide levels in selected foods in Brazil. Food Additives & Contaminants, 2007. 24(3): p. 236-241. https://doi.org/10.1080/02652030601053170 PMid:17364924
  36. Capei, R., et al., Occurrence of Acrylamide in breakfast cereals and biscuits available in Italy. J Prev Med Hyg, 2015. 56(4): p. E190-5.
  37. Tateo, F., M. Bononi, and G. Andreoli, Acrylamide levels in cooked rice, tomato sauces and some fast food on the Italian market. Journal of Food Composition and Analysis, 2007. 20(3): p. 232-235. https://doi.org/10.1016/j.jfca.2006.06.006
  38. Pacetti, D., et al., Acrylamide levels in selected Colombian foods. Food Additives & Contaminants: Part B, 2015. 8(2): p. 99-105. https://doi.org/10.1080/19393210.2014.995236 PMid:25494681
  39. Yoshida, M., et al. Acrylamide in Japanese Processed Foods and Factors Affecting Acrylamide Level in Potato Chips and Tea. in Chemistry and Safety of Acrylamide in Food. 2005. Boston, MA: Springer US.
  40. Raters, M. and R. Matissek, Acrylamide in cocoa: a survey of acrylamide levels in cocoa and cocoa products sourced from the German market. European Food Research and Technology, 2018. 244(8): p. 1381-1388. https://doi.org/10.1007/s00217-018-3051-2
  41. Akbari-Adergani, B., et al., Acrylamide content of industrial and traditional popcorn collected from Tehran's market, Iran: A risk assessment study. Journal of Food Protection, 2023. 86(1): p. 100001. https://doi.org/10.1016/j.jfp.2022.10.001 PMid:36916578
  42. Xiong, B., et al., Polyacrylamide degradation and its implications in environmental systems. NPJ Clean Water, 2018. 1(1): p. 17. https://doi.org/10.1038/s41545-018-0016-8
  43. Koszucka, A., et al., Acrylamide in human diet, its metabolism, toxicity, inactivation and the associated European Union legal regulations in food industry. Critical reviews in food science and nutrition, 2020. 60(10): p. 1677-1692. https://doi.org/10.1080/10408398.2019.1588222 PMid:30907623
  44. Cheng, Y.-C., et al., Towards sustainable management of polyacrylamide in soil-water environment: Occurrence, degradation, and risk. Science of The Total Environment, 2024. 926: p. 171587. https://doi.org/10.1016/j.scitotenv.2024.171587 PMid:38490421
  45. Edrees, A., et al., Acrylamide exposure induces growth retardation, neurotoxicity, stress, and immune/antioxidant disruption in Nile tilapia (Oreochromis niloticus): The alleviative effects of Chlorella vulgaris diets. Fish & Shellfish Immunology, 2024. 146: p. 109411. https://doi.org/10.1016/j.fsi.2024.109411 PMid:38301813
  46. Khan, H., J.P. Chaudhary, and R. Meena, Anionic carboxymethylagarose-based pH-responsive smart superabsorbent hydrogels for controlled release of anticancer drug. Int J Biol Macromol, 2019. 124: p. 1220-1229. https://doi.org/10.1016/j.ijbiomac.2018.12.045 PMid:30529202
  47. Flanagan, D.C., et al., Using polyacrylamide to control erosion on agricultural and disturbeds soils in rainfed areas. Journal of Soil and Water Conservation, 2003. 58(5): p. 301-311. https://doi.org/10.1080/00224561.2003.12457547
  48. Koh, J.K., et al., Recent advances of modified polyacrylamide in drilling technology. Journal of Petroleum Science and Engineering, 2022. 215: p. 110566. https://doi.org/10.1016/j.petrol.2022.110566
  49. Vermolen, E.C., et al., Pushing the Envelope for Polymer Flooding Towards High-temperature and High-salinity Reservoirs with Polyacrylamide Based Ter-polymers, in SPE Middle East Oil and Gas Show and Conference. 2011. p. SPE-141497-MS. https://doi.org/10.2118/141497-MS
  50. Sojka, R.E., et al., Polyacrylamide in Agriculture and Environmental Land Management, in Advances in Agronomy, D.L. Sparks, Editor. 2007, Academic Press. p. 75-162. https://doi.org/10.1016/S0065-2113(04)92002-0
  51. Yao, H., et al., Retardation and bridging effect of anionic polyacrylamide in cement paste and its relationship with early properties. Construction and Building Materials, 2021. 306: p. 124822. https://doi.org/10.1016/j.conbuildmat.2021.124822
  52. Junqua, G., S. Spinelli, and C. Gonzalez, Occurrence and fate of acrylamide in water-recycling systems and sludge in aggregate industries. Environmental Science and Pollution Research, 2015. 22(9): p. 6452-6460. https://doi.org/10.1007/s11356-014-3022-5 PMid:24840357
  53. Pietropaoli, F., et al., Acrylamide in widely consumed foods - a review. Food Additives & Contaminants: Part A, 2022. 39(5): p. 853-887. https://doi.org/10.1080/19440049.2022.2046292 PMid:35286246
  54. Taeymans, D., et al., A Review of Acrylamide: An Industry Perspective on Research, Analysis, Formation, and Control. Critical Reviews in Food Science and Nutrition, 2004. 44(5): p. 323-347. https://doi.org/10.1080/10408690490478082 PMid:15540646
  55. Barber, D.S., et al., Determination of acrylamide and glycidamide in rat plasma by reversed-phase high performance liquid chromatography. Journal of Chromatography B: Biomedical Sciences and Applications, 2001. 758(2): p. 289-293. https://doi.org/10.1016/S0378-4347(01)00191-8 PMid:11486839
  56. Zhang, D.-X., et al., Recent advances in emerging application of functional materials in sample pretreatment methods for liquid chromatography-mass spectrometry analysis of plant growth regulators: A mini-review. Journal of Chromatography A, 2023. 1704: p. 464130. https://doi.org/10.1016/j.chroma.2023.464130 PMid:37302252
  57. Soares, C., S. Cunha, and J. Fernandes, Determination of acrylamide in coffee and coffee products by GC-MS using an improved SPE clean-up. Food Additives & Contaminants, 2006. 23(12): p. 1276-1282. https://doi.org/10.1080/02652030600889608 PMid:17118870
  58. Hasan, G.M.M.A., A.K. Das, and M.A. Satter, Detection of acrylamide traces in some commonly consumed heat-treated carbohydrate-rich foods by GC-MS/MS in Bangladesh. Heliyon, 2022. 8(10): p. e11092. https://doi.org/10.1016/j.heliyon.2022.e11092 PMid:36276720 PMCid:PMC9583123
  59. Ghiasi, R., et al., Risk Evaluation of Acrylamide in Powder Infant Formula Based on Ingredient and Formulation in Three Critical Age Groups of Children Below 2 Years Old: Efficient Microextraction Followed by GC-MS Analysis Based on CCD. Food Analytical Methods, 2022. 15(1): p. 46-55. https://doi.org/10.1007/s12161-021-02101-5
  60. Delatour, T., A. Desmarchelier, and R.H. Stadler, Challenges in the measurement of acrylamide in food by confirmatory methods. Current Opinion in Food Science, 2022. 48: p. 100951. https://doi.org/10.1016/j.cofs.2022.100951
  61. Eslamizad, S., et al., Development of a Sensitive and Rapid Method for Determination of Acrylamide in Bread by LC-MS/MS and Analysis of Real Samples in Iran IR. Iran J Pharm Res, 2020. 19(1): p. 413-423.
  62. Đekić, S., et al., Rapid Determination of Acrylamide by HILIC-MS/MS in Selected Food Samples. Food Analytical Methods, 2024. 17(11): p. 1540-1549. https://doi.org/10.1007/s12161-024-02676-9
  63. Della Posta, S., et al., Miniaturized matrix solid-phase dispersion assisted by deep eutectic solvent for acrylamide determination in bread samples. Analytical and Bioanalytical Chemistry, 2025. 417(7): p. 1261-1269. https://doi.org/10.1007/s00216-024-05315-8 PMid:38740590
  64. Negoiță, M., et al., Development of SPE clean-up procedure for acrylamide determination from potato-based products by GC-MS/MS. Open Agriculture, 2020. 5(1): p. 305-316 https://doi.org/10.1515/opag-2020-0039
  65. Kim, S.H., J.-H. Hwang, and K.-G. Lee, Analysis of acrylamide using gas chromatography-nitrogen phosphorus detector (GC-NPD). Food Science and Biotechnology, 2011. 20(3): p. 835-839. https://doi.org/10.1007/s10068-011-0116-4
  66. Prata, R., et al., Determination of Acrylamide in Commercial Baby Foods by LC-QqQ-MS/MS: a Simple Method for Routine Analyses. Food Analytical Methods, 2023. 16(8): p. 1413-1421. https://doi.org/10.1007/s12161-023-02510-8
  67. Ferrer-Aguirre, A., et al., Simple and Fast Determination of Acrylamide and Metabolites in Potato Chips and Grilled Asparagus by Liquid Chromatography Coupled to Mass Spectrometry. Food Analytical Methods, 2016. 9(5): p. 1237-1245. https://doi.org/10.1007/s12161-015-0304-6
  68. Marín, J.M., et al., Study of different atmospheric-pressure interfaces for LC-MS/MS determination of acrylamide in water at sub-ppb levels. Journal of Mass Spectrometry, 2006. 41(8): p. 1041-1048. https://doi.org/10.1002/jms.1063 PMid:16832838
  69. Mastovska, K. and S.J. Lehotay, Rapid Sample Preparation Method for LC−MS/MS or GC−MS Analysis of Acrylamide in Various Food Matrices. Journal of Agricultural and Food Chemistry, 2006. 54(19): p. 7001-7008. https://doi.org/10.1021/jf061330r PMid:16968055
  70. Pan, M., et al., Review of Research into the Determination of Acrylamide in Foods. Foods, 2020. 9(4): p. 524. https://doi.org/10.3390/foods9040524 PMid:32331265 PMCid:PMC7230758
  71. Pandiselvam, R., et al., Acrylamide in food products: Formation, technological strategies for mitigation, and future outlook. Food Frontiers, 2024. 5(3): p. 1063-1095. https://doi.org/10.1002/fft2.368
  72. Jia, R., et al., Microbial L-asparaginase for Application in Acrylamide Mitigation from Food: Current Research Status and Future Perspectives. Microorganisms, 2021. 9(8): p. 1659. https://doi.org/10.3390/microorganisms9081659 PMid:34442737 PMCid:PMC8400838
  73. Pedreschi, F., et al., Acrylamide reduction in potato chips by using commercial asparaginase in combination with conventional blanching. LWT - Food Science and Technology, 2011. 44(6): p. 1473-1476. https://doi.org/10.1016/j.lwt.2011.02.004
  74. Granda, C., R.G. Moreira, and S.E. Tichy, Reduction of Acrylamide Formation in Potato Chips by Low-temperature Vacuum Frying. Journal of Food Science, 2004. 69(8): p. E405-E411. https://doi.org/10.1111/j.1365-2621.2004.tb09903.x
  75. Saraji, M. and S. Javadian, Single-drop microextraction combined with gas chromatography-electron capture detection for the determination of acrylamide in food samples. Food Chemistry, 2019. 274: p. 55-60. https://doi.org/10.1016/j.foodchem.2018.08.108 PMid:30372978
  76. Darbanian, M. and A. Nezhadali, Polypyrrole with graphenoxide nanocomposites as a coating sorbent based microextraction method for analysis of acrylamide. Journal of Food Measurement and Characterization, 2025. 19(1): p. 64-75. https://doi.org/10.1007/s11694-024-02933-9
  77. Michalak, J., et al., Effect of Microwave Heating on the Acrylamide Formation in Foods. Molecules, 2020. 25(18): p. 4140. https://doi.org/10.3390/molecules25184140 PMid:32927728 PMCid:PMC7570677
  78. Akkurt, K., B.A. Mogol, and V. Gökmen, Mitigation of acrylamide in baked potato chips by vacuum baking and combined conventional and vacuum baking processes. LWT, 2021. 144: p. 111211. https://doi.org/10.1016/j.lwt.2021.111211
  79. Powers, S.J., et al., Progress on reducing acrylamide levels in potato crisps in Europe, 2002 to 2019. Food Additives & Contaminants: Part A, 2021. 38(5): p. 782-806. https://doi.org/10.1080/19440049.2020.1871083 PMid:33735593
  80. Delatour, T. and R.H. Stadler, Two decades of research in dietary acrylamide: What do we know today. Critical Reviews in Food Science and Nutrition, 2023. 63(33): p. 12169-12177. https://doi.org/10.1080/10408398.2022.2099344 PMid:35852101
  81. Marta, M., J.M. Francisco, and D.-A. Cristina, Acrylamide in biscuits commercialised in Spain: a view of the Spanish market from 2007 to 2019. Food & Function, 2019. 10(10): p. 6624-6632. https://doi.org/10.1039/C9FO01554J PMid:31553344
  82. Spivey, A., A Matter Of Degrees: Advancing Our Understanding of Acrylamide. Environmental Health Perspectives, 2010. 118(4): p. A160-A167. https://doi.org/10.1289/ehp.118-a160
  83. Keramat, J., et al., Acrylamide in Baking Products: A Review Article. Food and Bioprocess Technology, 2011. 4(4): p. 530-543. https://doi.org/10.1007/s11947-010-0495-1
  84. Acrylamide in Foods Generated through Heating (Contaminants). Food Saf (Tokyo), 2016. 4(3): p. 74-88. https://doi.org/10.14252/foodsafetyfscj.2016013s PMid:32231909 PMCid:PMC6989166
  85. Adimas, M.A., et al., Traditional food processing and Acrylamide formation: A review. Heliyon, 2024. 10(9). https://doi.org/10.1016/j.heliyon.2024.e30258 PMid:38720707 PMCid:PMC11076960
  86. Kalash, N., et al., An exploratory study to assess the knowledge, attitudes and practices of Lebanese residents towards acrylamide. PLOS ONE, 2024. 19(4): p. e0300617. https://doi.org/10.1371/journal.pone.0300617 PMid:38625973 PMCid:PMC11020536
  87. Li, D., et al., Nano-Grafted Acrylamide Copolymer as an Anti-Temperature and Anti-Calcium Fluid Loss Agent for Water-Based Drilling Fluids. Energy & Fuels, 2023. 37(10): p. 7213-7220. https://doi.org/10.1021/acs.energyfuels.3c00919
  88. Mestdagh, F., et al., Optimization of the blanching process to reduce acrylamide in fried potatoes. LWT - Food Science and Technology, 2008. 41(9): p. 1648-1654. https://doi.org/10.1016/j.lwt.2007.10.007
  89. Xu, F., M.-J. Oruna-Concha, and J.S. Elmore, The use of asparaginase to reduce acrylamide levels in cooked food. Food Chemistry, 2016. 210: p. 163-171. https://doi.org/10.1016/j.foodchem.2016.04.105 PMid:27211635
  90. Ohayon, J.L., C. Polsky, and M.R. Schwarzman, How a Right-to-Know Law Shifts Industry away from Chemicals of Concern: The Case of California's Proposition 65. Environmental Science & Technology, 2025. 59(7): p. 3344-3354. https://doi.org/10.1021/acs.est.4c07495 PMid:39936661 PMCid:PMC11866925
  91. FDA. fda.acrylamide. 2024; Available from: https://www.fda.gov/food/process-contaminants-food/acrylamide.
  92. Union, E. Food Safety:Acrylamide. 2020; Available from: https://food.ec.europa.eu/food-safety/chemical-safety/contaminants/catalogue/acrylamide_en.
  93. Authority, E.F.S., Outcome of the public consultation on the draft Scientific Opinion of the EFSA Panel on Contaminants in the Food Chain (CONTAM) on acrylamide in food. EFSA Supporting Publications, 2015. 12(6): p. 817E. https://doi.org/10.2903/sp.efsa.2015.EN-817
  94. Ghasemzadeh, V., et al., Investigation of Acrylamide formation and reduction ways of it in specific food products. Iranian-J-Nutr-Sci-Food-Technol, 2013. 7(5): p. 957.
  95. Hosseini-Esfahani, F., et al., Acrylamide Intake and Metabolic Syndrome Risk: The Tehran Lipid and Glucose Study. Food Science & Nutrition, 2025. 13(4): p. e70038. https://doi.org/10.1002/fsn3.70038 PMid:40255553 PMCid:PMC12006729
  96. Eslamizad, S., et al., Health risk assessment of acrylamide in bread in Iran using LC-MS/MS. Food and Chemical Toxicology, 2019. 126: p. 162-168. https://doi.org/10.1016/j.fct.2019.02.019 PMid:30753857
  97. Mousavi Khaneghah, A., et al., The Concentration of Acrylamide in Different Food Products: A Global Systematic Review, Meta-Analysis, and Meta-Regression. Food Reviews International, 2022. 38(6): p. 1286-1304. https://doi.org/10.1080/87559129.2020.1791175