تعهد نامه

نوع مقاله : مقالات مروری روایی و یکپارچه

نویسندگان

1 دانشیار دپارتمان زیست شناسی، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران.

2 دانشجوی کارشناسی ارشد بیوتکنولوژی میکروبی، دپارتمان زیست شناسی، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران.

چکیده

زمینه و هدف: آنتی‌بیوتیک‌های باقی‌مانده از فاضلاب‌های شهری و صنعتی، به طور مداوم در محیط‌های آب شیرین حاوی ریزجلبک‌ها آزاد می‌شوند و آن‌ها را به مخزنی تبدیل می‌کنند که به افزایش مقاومت آنتی‌بیوتیکی منجر می‌شود؛ بنابراین، درک اثرات باقی مانده آنتی‌بیوتیک‌ها بر ریزجلبک‌ها به دلیل نقش حیاتی آن‌ها به‌عنوان تولیدکنندگان اولیه در اکوسیستم، ضروری است.

مواد و روش‌ها: در این مقاله مروری، بیش از 200 نشریه معتبر با جزییات مورد بررسی قرار گرفته است. به این منظور جستجو از پایگاه‌های اطلاعاتی مانند Science Direct، Scopus، Web of Sciences و فهرست مجلات با دسترسی آزاد انجام شد و از کلیدواژه‌هایی مانند «ریزجلبک‌ها»، «تجزیه و حذف زیستی»، «جذب و تجمع زیستی»، «مکانیسم اثر طیف وسیعی از آنتی‌بیوتیک‌ها»، «اثرات هم‌افزایی و مقابله‌ای»، «اکتساب و انتقال ژن‌های مقاومت آنتی‌بیوتیکی» و «جهش‌های حاصل از آنتی‌بیوتیک‌ها» استفاده گردید.

یافته‌ها: مقاومت ایجاد شده در مقابل آنتی‌بیوتیک‌ها در ریزجلبک‌ها با افزایش نرخ فتوسنتز، فعالیت آنتی‌اکسیدانی و تولید سم همراه است، در حالی که استرس اکسیداتیو و رشد کاهش می‌یابد. بنابراین حضور بیشتر توده‌های سیانوتوکسین‌ها به‌ویژه نزدیک خروجی‌های تصفیه‌خانه‌های فاضلاب، می‌تواند نقش مهمی برای حذف ژن‌های مقاوم به آنتی‌بیوتیک داشته باشد.

نتیجه‌گیری: ارتباط مستقیمی بین میزان آنتی‌بیوتیک‌ها و افزایش تولید سموم ریزجلبک‌ها وجود دارد که این نشان می‌دهد ریزجلبک‌ها با گذشت زمان به آنتی‌بیوتیک‌ها مقاوم می‌شوند و به این ترتیب می‌توانند نقش حیاتی در حذف ROS اضافی ناشی از قرار گرفتن در معرض آنتی‌بیوتیک ایفا کنند.

کلیدواژه‌ها

عنوان مقاله [English]

Review of the Interactions between Cyanobacteria and Antibiotics in Urban and Industrial Wastewaters

نویسندگان [English]

  • Bahareh Nowruzi 1
  • Narjes EtminanZadeh 2
  • Anaita Sobhani 2

1 Associate professor, Department of Biology, SR.C., Islamic Azad University, Tehran, Iran.

2 M.Sc. Student in microbial Biotechnology, Department of Biology, SR.C., Islamic Azad University, Tehran, Iran.

چکیده [English]

Background and Objective: Antibiotic residues from urban and industrial wastewater discharge and agricultural runoff are continuously released into freshwater environments, turning them into reservoirs that contribute to increased antibiotic resistance. Therefore, understanding the effects of antibiotic residues on aquatic organisms, especially cyanobacteria, is essential due to their vital role as primary producers in ecosystems.

Materials and Methods: In this review article, over 200 reputable publications related to the effects of antibiotics on major biological processes in cyanobacteria-including photosynthesis, oxidative stress, and macromolecule metabolism-are examined in detail. The mechanisms of their adaptation to antibiotic exposure are also thoroughly reviewed. To this end, searches were conducted in databases such as Science Direct, Scopus, Web of Sciences, and open-access journal lists, using keywords like "cyanobacteria," "biodegradation and bioremediation," "bioaccumulation and biomagnification," "activation of antioxidant systems," "mechanism of action of a wide range of antibiotics," synergistic and antagonistic effects," "acquisition and transfer of antibiotic resistance genes," and "mutations induced by antibiotics."

Results: The antibiotic resistance developed in microalgae is associated with an increased rate of photosynthesis, antioxidant activity, and toxin production, while oxidative stress and growth decrease. Therefore, the higher presence of cyanotoxin biomass, especially near wastewater treatment plant outlets, may play an important role in the removal of antibiotic resistance genes.

Conclusion: There is a direct correlation between the levels of antibiotics and the increased production of microalgal toxins, indicating that microalgae become resistant to antibiotics over time and thus can play a vital role in eliminating the excess ROS generated from antibiotic exposure.
 
Open Access Policy: This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/

کلیدواژه‌ها [English]

  • Mechanism of Action of a Wide Range of Antibiotics: Antibiotic Resistance
  • Biodegradation
  • Transfer of Antibiotic Resistance Genes
  • Synergistic and Antagonistic Effects
  1. Timms V, Hassan K, Pearson L, Neilan B. Cyanobacteria as a critical reservoir of the environmental antimicrobial resistome. Environmental Microbiology. 2023;25(11):2266-76 https://doi.org/10.1111/1462-2920.16453 PMid:37365851
  2. Wang Z, Chen Q, Zhang J, Yan H, Chen Y, Chen C, et al. High prevalence of unstable antibiotic heteroresistance in cyanobacteria causes resistance underestimation. Water research. 2021;202:117430 https://doi.org/10.1016/j.watres.2021.117430 PMid:34298276
  3. Bucciardini R, Fragola V, Lucattini S, Terlizzi R, Mancini M, De Castro P, et al. dell'Istituto Superiore di Sanità dell'Istituto Superiore di Sanità. Not Ist Super Sanità. 2013;26(10):11-6.
  4. Yu C, Pang H, Wang J-H, Chi Z-Y, Zhang Q, Kong F-T, et al. Occurrence of antibiotics in waters, removal by microalgae-based systems, and their toxicological effects: A review. Science of The Total Environment. 2022;813:151891. https://doi.org/10.1016/j.scitotenv.2021.151891 PMid:34826467
  5. Donolo RM, Collarile P, De Maria I, Donolo M, Filippi E, Rizzo M, et al., editors. A Pilot Project Proposal for the Implementation of a Geographic Information System for Immuno-Oncology in Italy. GISTAM; 2020. https://doi.org/10.5220/0009818301350139
  6. El Semary NA, Bakir EM. Multidrug-resistant bacterial pathogens and public health: the antimicrobial effect of cyanobacterial-biosynthesized silver nanoparticles. Antibiotics. 2022;11(8):1003. https://doi.org/10.3390/antibiotics11081003 PMid:35892392 PMCid:PMC9330853
  7. Ji W, Ma J, Zheng Z, Al-Herrawy AZ, Xie B, Wu D. Algae blooms with resistance in fresh water: Potential interplay between Microcystis and antibiotic resistance genes. Science of The Total Environment. 2024:173528. https://doi.org/10.1016/j.scitotenv.2024.173528 PMid:38802023
  8. Yalcin YS, Aydin BN, Sayadujjhara M, Sitther V. Antibiotic-induced changes in pigment accumulation, photosystem II, and membrane permeability in a model cyanobacterium. Frontiers in Microbiology. 2022;13:930357. https://doi.org/10.3389/fmicb.2022.930357 PMid:35814666 PMCid:PMC9257187
  9. Pham MN, Nishimura F, Lan JCW, Khoo KS. Recent advancement of eliminating antibiotic resistance bacteria and antibiotic resistance genes in livestock waste: A review. Environmental Technology & Innovation. 2024:103751. https://doi.org/10.1016/j.eti.2024.103751
  10. Gantar M, Svirčev Z. Microalgae and cyanobacteria: food for thought 1. Journal of phycology. 2008;44(2):260-8. https://doi.org/10.1111/j.1529-8817.2008.00469.x PMid:27041182
  11. Gong W, Guo L, Huang C, Xie B, Jiang M, Zhao Y, et al. A systematic review of antibiotics and antibiotic resistance genes (ARGs) in mariculture wastewater: Antibiotics removal by microalgal-bacterial symbiotic system (MBSS), ARGs characterization on the metagenomic. Science of the Total Environment. 2024:172601 https://doi.org/10.1016/j.scitotenv.2024.172601 PMid:38657817
  12. Eheneden I, Wang R, Zhao J. Antibiotic removal by microalgae-bacteria consortium: Metabolic pathways and microbial responses. Science of The Total Environment. 2023;891:164489. https://doi.org/10.1016/j.scitotenv.2023.164489 PMid:37279806
  13. Wang W, Weng Y, Luo T, Wang Q, Yang G, Jin Y. Antimicrobial and the resistances in the environment: Ecological and health risks, influencing factors, and mitigation strategies. Toxics. 2023;11(2):185. https://doi.org/10.3390/toxics11020185 PMid:36851059 PMCid:PMC9965714
  14. Fang Y, Lin G, Liu Y, Zhang J. Removal of sulfamethoxazole and production of cyanobacterial lipid promoted by the construction of a consortium containing a non-toxic cyanobacterium and sewage bacteria. Journal of Cleaner Production. 2024;447:141544. https://doi.org/10.1016/j.jclepro.2024.141544
  15. Le VV, Tran QG, Ko SR, Lee SA, Oh HM, Kim HS, et al. How do freshwater microalgae and cyanobacteria respond to antibiotics? Crit Rev Biotechnol. 2023;43(2):191-211 https://doi.org/10.1080/07388551.2022.2026870 PMid:35189751
  16. Zuorro A, Lavecchia R, Contreras-Ropero JE, Martínez JBG, Barajas-Ferreira C, Barajas-Solano AF. Natural antimicrobial agents from algae: Current advances and future directions. International Journal of Molecular Sciences. 2024;25(21):11826. https://doi.org/10.3390/ijms252111826 PMid:39519377 PMCid:PMC11545849
  17. Bombaywala S, Mandpe A, Paliya S, Kumar S. Antibiotic resistance in the environment: a critical insight on its occurrence, fate, and eco-toxicity. Environmental Science and Pollution Research. 2021;28:24889-916 https://doi.org/10.1007/s11356-021-13143-x PMid:33765260
  18. Gu X, Zhai H, Cheng S. Fate of antibiotics and antibiotic resistance genes in home water purification systems. Water Research. 2021;190:116762 https://doi.org/10.1016/j.watres.2020.116762 PMid:33387948
  19. Zhong R, Li H, Wang Y, Zhang Y, Zhou J, Wang T. Removal of antibiotic resistance genes and pathogenicity in effluent from municipal wastewater treatment plant by plasma oxidation. Chemical Engineering Journal. 2023;454:140274. https://doi.org/10.1016/j.cej.2022.140274
  20. Manna B, Jay E, Zhang W, Zhou X, Lyu B, Thomas GM, et al. Short-Term Warming Induces Cyanobacterial Blooms and Antibiotic Resistance in Freshwater Lake, as Revealed by Metagenomics Analysis. Water. 2024;16(18):2655. https://doi.org/10.3390/w16182655
  21. Soni K, Jyoti K, Chandra H, Chandra R. Bacterial antibiotic resistance in municipal wastewater treatment plant; mechanism and its impacts on human health and economy. Bioresource Technology Reports. 2022;19:101080. https://doi.org/10.1016/j.biteb.2022.101080
  22. Wang Z, Chen Q, Zhang J, Xu H, Miao L, Zhang T, et al. Climate warming promotes collateral antibiotic resistance development in cyanobacteria. Water Research. 2024;256:121642. https://doi.org/10.1016/j.watres.2024.121642 PMid:38657307
  23. Deng Y, Mao C, Lin Z, Su W, Cheng C, Li Y, et al. Nutrients, temperature, and oxygen mediate microbial antibiotic resistance in sea bass (Lateolabrax maculatus) ponds. Science of The Total Environment. 2022;819:153120. https://doi.org/10.1016/j.scitotenv.2022.153120 PMid:35041966
  24. Bydalek F, Webster G, Barden R, Weightman AJ, Kasprzyk-Hordern B, Wenk J. Microbial community and antimicrobial resistance niche differentiation in a multistage, surface flow constructed wetland. Water Research. 2024;254:121408. https://doi.org/10.1016/j.watres.2024.121408 PMid:38442607
  25. Fang Y, Liu Y, Zhang J. Mechanisms for the increase in lipid production in cyanobacteria during the degradation of antibiotics. Environmental Pollution. 2023;322:121171. https://doi.org/10.1016/j.envpol.2023.121171 PMid:36736559
  26. Zhang Y, Zhao Z, Xu H, Wang L, Liu R, Jia X. Fate of antibiotic resistance genes and bacteria in a coupled water-processing system with wastewater treatment plants and constructed wetlands in coastal eco-industrial parks. Ecotoxicology and Environmental Safety. 2023;252:114606. https://doi.org/10.1016/j.ecoenv.2023.114606 PMid:36738611
  27. Xiao Z, Qin Y, Han L, Liu Y, Wang Z, Huang Y, et al. Effects of wastewater treatment plant effluent on microbial risks of pathogens and their antibiotic resistance in the receiving river. Environmental Pollution. 2024;345:123461. https://doi.org/10.1016/j.envpol.2024.123461 PMid:38286261
  28. Okeke ES, Chukwudozie KI, Nyaruaba R, Ita RE, Oladipo A, Ejeromedoghene O, et al. Antibiotic resistance in aquaculture and aquatic organisms: a review of current nanotechnology applications for sustainable management. Environmental Science and Pollution Research. 2022;29(46):69241-74. https://doi.org/10.1007/s11356-022-22319-y PMid:35969340 PMCid:PMC9376131
  29. Asowata-Ayodele AM, Oyetunji OE, Adeyeoluwa TE, Olawoyin TG, Olatunji BP, Bamgbose T. Algae and Cyanobacteria as Food Supplements. Microbial Products for Health and Nutrition: Springer; 2024. p. 29-47. https://doi.org/10.1007/978-981-97-4235-6_2
  30. Pastor-Lopez EJ, Casas ME, Hellman D, Müller JA, Matamoros V. Nature-based solutions for antibiotics and antimicrobial resistance removal in tertiary wastewater treatment: Microbiological composition and risk assessment. Water research. 2024;261:122038. https://doi.org/10.1016/j.watres.2024.122038 PMid:38996727
  31. Wang Z, Chen Q, Zhang J, Zou Y, Huang Y, Yan H, et al. Insights into antibiotic stewardship of lake-rivers-basin complex systems for resistance risk control. Water Research. 2023;228:119358. https://doi.org/10.1016/j.watres.2022.119358 PMid:36402058
  32. Li Z, Li S, Wu Q, Gao X, Zhu L. Physiological responses and removal mechanisms of ciprofloxacin in freshwater microalgae. J Hazard Mater. 2024;466:133519. https://doi.org/10.1016/j.jhazmat.2024.133519 PMid:38278073
  33. Zhou T, Zhang Z, Liu H, Dong S, Nghiem LD, Gao L, et al. A review on microalgae-mediated biotechnology for removing pharmaceutical contaminants in aqueous environments: Occurrence, fate, and removal mechanism. J Hazard Mater. 2023;443(Pt A):130213 https://doi.org/10.1016/j.jhazmat.2022.130213 PMid:36283219
  34. Farías DR, Ibarra R, Estévez RA, Tlusty MF, Nyberg O, Troell M, et al. Towards Sustainable Antibiotic Use in Aquaculture and Antimicrobial Resistance: Participatory Experts' Overview and Recommendations. Antibiotics (Basel). 2024;13(9). https://doi.org/10.3390/antibiotics13090887 PMid:39335060 PMCid:PMC11428492
  35. Lee J, Lee S, Hu C, Marion JW. Beyond cyanotoxins: increased Legionella, antibiotic resistance genes in western Lake Erie water and disinfection-byproducts in their finished water. Frontiers in Microbiology. 2023;14:1233327. https://doi.org/10.3389/fmicb.2023.1233327 PMid:37700867 PMCid:PMC10493389
  36. Ji X, Tang Y, Ye J, Wu S, Hou M, Huang S, et al. The effect of carbon-based copper nanocomposites on Microcystis aeruginosa and the movability of antibiotic resistance genes in urban water. Chemosphere. 2022;286:131744. https://doi.org/10.1016/j.chemosphere.2021.131744 PMid:34391111
  37. Hao Y, Xia Y, Huang J, Zhong C, Li G. Covalent-Organic Frameworks for Selective and Sensitive Detection of Antibiotics from Water. Polymers (Basel). 2024;16(16). https://doi.org/10.3390/polym16162319 PMid:39204541 PMCid:PMC11359747
  38. Liu Y, Zhang J, Gao B, Feng S. Combined effects of two antibiotic contaminants on Microcystis aeruginosa. Journal of Hazardous Materials. 2014;279:148-55. https://doi.org/10.1016/j.jhazmat.2014.07.002 PMid:25051238
  39. You X, Chen X, Jiang Y, Chen H, Liu J, Wu Z, et al. 6PPD-quinone affects the photosynthetic carbon fixation in cyanobacteria by extracting photosynthetic electrons. Innovation (Camb). 2024;5(4):100630. https://doi.org/10.1016/j.xinn.2024.100630 PMid:38800352 PMCid:PMC11126802
  40. Ricky R, Shanthakumar S. An investigation on removal of ciprofloxacin and norfloxacin by phycoremediation with an emphasis on acute toxicity and biochemical composition. Scientific Reports. 2023;13(1):13911. https://doi.org/10.1038/s41598-023-41144-y PMid:37626153 PMCid:PMC10457305
  41. Ding J, Shi H, Timmons T, Adams C. Release and removal of microcystins from microcystis during oxidative-, physical-, and UV-based disinfection. Journal of Environmental Engineering. 2010;136(1):2-11. https://doi.org/10.1061/(ASCE)EE.1943-7870.0000114
  42. Pino-Otín MR, Lorca G, Langa E, Roig F, Terrado EM, Ballestero D. Assessing the Ecotoxicity of Eight Widely Used Antibiotics on River Microbial Communities. Int J Mol Sci. 2023;24(23) https://doi.org/10.3390/ijms242316960 PMid:38069283 PMCid:PMC10707202
  43. Chen Z, Gu G, Wang Z, Ou D, Liang X, Hu C, et al. Effects of Tetracycline on Scenedesmus obliquus Microalgae Photosynthetic Processes. Int J Mol Sci. 2022;23(18). https://doi.org/10.3390/ijms231810544 PMid:36142466 PMCid:PMC9504007
  44. Chandel N, Ahuja V, Gurav R, Kumar V, Tyagi VK, Pugazhendhi A, et al. Progress in microalgal mediated bioremediation systems for the removal of antibiotics and pharmaceuticals from wastewater. Sci Total Environ. 2022;825:153895 https://doi.org/10.1016/j.scitotenv.2022.153895 PMid:35182616
  45. Jiang Y, Liu Y, Zhang J. Mechanisms for the stimulatory effects of a five-component mixture of antibiotics in Microcystis aeruginosa at transcriptomic and proteomic levels. Journal of Hazardous Materials. 2021;406:124722. https://doi.org/10.1016/j.jhazmat.2020.124722 PMid:33296757
  46. Leng L, Wei L, Xiong Q, Xu S, Li W, Lv S, et al. Use of microalgae based technology for the removal of antibiotics from wastewater: A review. Chemosphere. 2020;238:124680. https://doi.org/10.1016/j.chemosphere.2019.124680 PMid:31545213
  47. Amangelsin Y, Semenova Y, Dadar M, Aljofan M, Bjørklund G. The impact of tetracycline pollution on the aquatic environment and removal strategies. Antibiotics. 2023;12(3):440. https://doi.org/10.3390/antibiotics12030440 PMid:36978308 PMCid:PMC10044355
  48. Xiong Q, Hu LX, Liu YS, Zhao JL, He LY, Ying GG. Microalgae-based technology for antibiotics removal: From mechanisms to application of innovational hybrid systems. Environ Int. 2021;155:106594 https://doi.org/10.1016/j.envint.2021.106594 PMid:33940395
  49. Zheng S, Wang Y, Chen C, Zhou X, Liu Y, Yang J, et al. Current Progress in Natural Degradation and Enhanced Removal Techniques of Antibiotics in the Environment: A Review. Int J Environ Res Public Health. 2022;19(17). https://doi.org/10.3390/ijerph191710919 PMid:36078629 PMCid:PMC9518397
  50. Li RS, Liu J, Wen C, Shi Y, Ling J, Cao Q, et al. Transformable nano-antibiotics for mechanotherapy and immune activation against drug-resistant Gram-negative bacteria. Science Advances. 2023;9(34):eadg9601. https://doi.org/10.1126/sciadv.adg9601 PMid:37624881 PMCid:PMC10456869
  51. Xiao Z, Meng H, Li S, Ning W, Song Y, Han J, et al. Insights into the removal of antibiotics from livestock and aquaculture wastewater by algae-bacteria symbiosis systems. Environ Res. 2024;257:119326. https://doi.org/10.1016/j.envres.2024.119326 PMid:38849002
  52. Madara E, Benton L, Heffernan C, Gitahi N. Antimicrobial use and practice in aquaculture production systems in Nairobi, Kenya. 2022.
  53. Bej S, Swain S, Bishoyi AK, Mandhata CP, Sahoo CR, Padhy RN. Recent advancements on antibiotic bioremediation in wastewaters with a focus on algae: an overview. Environ Technol. 2024;45(21):4214-29 https://doi.org/10.1080/09593330.2023.2245166 PMid:37545329
  54. Bhatt P, Brown PB, Huang JY, Hussain AS, Liu HT, Simsek H. Algae and indigenous bacteria consortium in treatment of shrimp wastewater: A study for resource recovery in sustainable aquaculture system. Environ Res. 2024;250:118447. https://doi.org/10.1016/j.envres.2024.118447 PMid:38341075
  55. Wang K, Tong L, Yu J, Zhou Z, Sheng J, Ji H, et al. Supplementation of diethyl aminoethyl hexanoate for enhancing antibiotics removal by different microalgae-based system. Bioresour Technol. 2024;408:131231 https://doi.org/10.1016/j.biortech.2024.131231 PMid:39117244
  56. Pekkoh J, Thurakit T, Ruangrit K, Chaichana C, Phinyo K, Lomakool S, et al. Co-bioaugmentation with microalgae and probiotic bacteria: Sustainable solutions for upcycling of aquaculture wastewater and agricultural residues into microbial-rice bran complexes. Environ Res. 2024;261:119760. https://doi.org/10.1016/j.envres.2024.119760 PMid:39121700
  57. Sharma U, Rawat D, Mukherjee P, Farooqi F, Mishra V, Sharma RS. Ecological life strategies of microbes in response to antibiotics as a driving factor in soils. Science of the Total Environment. 2023;854:158791. https://doi.org/10.1016/j.scitotenv.2022.158791 PMid:36108841
  58. Pan M, Lyu T, Zhan L, Matamoros V, Angelidaki I, Cooper M, et al. Mitigating antibiotic pollution using cyanobacteria: Removal efficiency, pathways and metabolism. Water Research. 2021;190:116735. https://doi.org/10.1016/j.watres.2020.116735 PMid:33352526
  59. Avunje S, Patil PK, Ezaz W, Praveena E, Ray A, Viswanathan B, et al. Effect of oxytetracycline on the biosafety, gut microbial diversity, immune gene expression and withdrawal period in Pacific whiteleg shrimp, Penaeus vannamei. Aquaculture. 2021;543:736957. https://doi.org/10.1016/j.aquaculture.2021.736957
  60. Farías DR, Ibarra R, Estévez RA, Tlusty MF, Nyberg O, Troell M, et al. Towards Sustainable Antibiotic Use in Aquaculture and Antimicrobial Resistance: Participatory Experts' Overview and Recommendations. Antibiotics. 2024;13(9):887. https://doi.org/10.3390/antibiotics13090887 PMid:39335060 PMCid:PMC11428492
  61. Kiskó G, Bajramović B, Elzhraa F, Erdei-Tombor P, Dobó V, Mohácsi-Farkas C, et al. The Invisible Threat of Antibiotic Resistance in Food. Antibiotics. 2025;14(3):250. https://doi.org/10.3390/antibiotics14030250 PMid:40149061 PMCid:PMC11939317
  62. Frascaroli G, Hunter C, Roberts J, Escudero A. Antibiotic removal by three promising microalgae strains: biotic, abiotic routes, and response mechanisms. Water, Air, & Soil Pollution. 2024;235(9):600. https://doi.org/10.1007/s11270-024-07385-x
  63. Bishoyi AK, Mandhata CP, Sahoo CR, Samal P, Dubey D, Jali BR, et al. Biogenic Synthesis and Characterization of Silver Nanoparticles With Cyanobacterium Oscillatoria salina Using Against MDR Pathogenic Bacteria and Their Antiproliferative and Toxicity Study. Cell Biochemistry and Function. 2025;43(1):e70043 https://doi.org/10.1002/cbf.70043 PMid:39853775
  64. Zhong Q-L, Xiong J-Q. A Globally Distributed Cyanobacterial Nitroreductase Capable of Conferring Biodegradation of Chloramphenicol. Research.
  65. Wang Z, Chu Y, Chang H, Xie P, Zhang C, Li F, et al. Advanced insights on removal of antibiotics by microalgae-bacteria consortia: A state-of-the-art review and emerging prospects. Chemosphere. 2022;307:136117. https://doi.org/10.1016/j.chemosphere.2022.136117 PMid:35998727
  66. Silva TO, Bulla ACS, Teixeira BA, Gomes VMS, Raposo T, Barbosa LS, et al. Bacterial efflux pump OMPs as vaccine candidates against multidrug-resistant Gram-negative bacteria. Journal of Leukocyte Biology. 2024;116(6):1237-53. https://doi.org/10.1093/jleuko/qiae154 PMid:39011942
  67. Xiong Q, Hu L-X, Liu Y-S, Zhao J-L, He L-Y, Ying G-G. Microalgae-based technology for antibiotics removal: From mechanisms to application of innovational hybrid systems. Environment international. 2021;155:106594. https://doi.org/10.1016/j.envint.2021.106594 PMid:33940395
  68. 김민교. Analysis on dynamics in the fecal microbiome and antibiotic resistance genes in rainbow trout (Oncorhynchus mykiss) treated with antibiotics: 부경대학교; 2023.
  69. Mukherjee A, Ahn Y-H. Terpinolene as an enhancer for ultrasonic disinfection of multi-drug-resistant bacteria in hospital wastewater. Environmental Science and Pollution Research. 2022:1-15. https://doi.org/10.1007/s11356-022-18611-6 PMid:35037151
  70. Xiao Z, Meng H, Li S, Ning W, Song Y, Han J, et al. Insights into the removal of antibiotics from livestock and aquaculture wastewater by algae-bacteria symbiosis systems. Environmental Research. 2024;257:119326. https://doi.org/10.1016/j.envres.2024.119326 PMid:38849002
  71. Thane G. A Call to Action: An Evidence Review on Pharmaceutical Disposal in the Context of Antimicrobial Resistance in Canada. 2021.
  72. Li S, Show PL, Ngo HH, Ho S-H. Algae-mediated antibiotic wastewater treatment: A critical review. Environmental Science and Ecotechnology. 2022;9:100145 https://doi.org/10.1016/j.ese.2022.100145 PMid:36157853 PMCid:PMC9488067
  73. Välitalo P, Kruglova A, Mikola A, Vahala R. Toxicological impacts of antibiotics on aquatic micro-organisms: a mini-review. International Journal of Hygiene and Environmental Health. 2017;220(3):558-69. https://doi.org/10.1016/j.ijheh.2017.02.003 PMid:28262329
  74. Iskandar K, Murugaiyan J, Hammoudi Halat D, Hage SE, Chibabhai V, Adukkadukkam S, et al. Antibiotic discovery and resistance: the chase and the race. Antibiotics. 2022;11(2):182. https://doi.org/10.3390/antibiotics11020182 PMid:35203785 PMCid:PMC8868473
  75. Hom-Diaz A, Jaén-Gil A, Rodríguez-Mozaz S, Barceló D, Vicent T, Blánquez P. Insights into removal of antibiotics by selected microalgae (Chlamydomonas reinhardtii, Chlorella sorokiniana, Dunaliella tertiolecta and Pseudokirchneriella subcapitata). Algal Research. 2022;61:102560 https://doi.org/10.1016/j.algal.2021.102560
  76. Singh A, Chaurasia D, Khan N, Singh E, Bhargava PC. Efficient mitigation of emerging antibiotics residues from water matrix: Integrated approaches and sustainable technologies. Environmental Pollution. 2023;328:121552 https://doi.org/10.1016/j.envpol.2023.121552 PMid:37075921
  77. Chu Y, Li S, Xie P, Chen X, Li X, Ho S-H. New insight into the concentration-dependent removal of multiple antibiotics by Chlorella sorokiniana. Bioresource Technology. 2023;385:129409. https://doi.org/10.1016/j.biortech.2023.129409 PMid:37392966
  78. Chu Y, Wang R, Li S, Chen X, Ren N, Ho S-H. Biodegradation of sulfonamide antibiotics by microalgae: mechanistic insights into substituent-induced effects. ACS ES&T Water. 2024;4(6):2422-32. https://doi.org/10.1021/acsestwater.3c00761
  79. Suzuki S, Pruden A, Virta M, Zhang T. Antibiotic resistance in aquatic systems. Frontiers Media SA; 2017. p. 14. https://doi.org/10.3389/978-2-88945-131-9