تعهد نامه

نوع مقاله : مقالات پژوهشی

نویسندگان

1 کارشناسی ارشد مهندسی بهداشت محیط، گروه مهندسی بهداشت محیط، دانشکده بهداشت، دانشگاه علوم پزشکی مشهد، ایران.

2 استاد گروه مهندسی بهداشت محیط، گروه مهندسی بهداشت محیط، دانشکده بهداشت، دانشگاه علوم پزشکی مشهد، ایران.

3 مرکز تحقیقات علوم و فناوری محیطی، گروه مهندسی بهداشت محیط، دانشکده بهداشت، دانشگاه علوم پزشکی شهید صدوقی، یزد، ایران.

4 استادیار گروه مهندسی بهداشت محیط، گروه مهندسی بهداشت محیط، دانشکده بهداشت، دانشگاه علوم پزشکی مشهد، ایران.

چکیده

زمینه و هدف: یکی از معضلات جامعه‌ی شهرنشین امروز رشد سریع جمعیت، افزایش موادمصرفی و در نتیجه تولید روزافزون پسماندهای شهری است که نیازمند برنامه‌ریزی اصولی جهت دفع صحیح می‌باشد. کمپوست‌سازی هم‌زمان ضایعات آلی به‌عنوان روشی موثر برای دفع دو یا چند زباله به‌طور هم‌زمان و به حداقل رساندن معایب کمپوست شناخته شده است. این مطالعه بر روی شاخص‌های مختلف تثبیت و رسیدن فرآیند کمپوست هم‌زمان پسماند آلی و فضولات مرغی تمرکز دارد.

مواد و روش‌ها: در این مطالعه‌ی تجربی، پسماند آلی از سلف دانشگاه، فضولات مرغی از مرغداری دانشگاه فردوسی و عامل حجیم‌کننده خاک‌اره از سطح شهر تهیه و فرایند کمپوست‌سازی هم‌زمان مورد بررسی قرار گرفت. در این پژوهش به‌طور کلی  52 بار نمونه برداشته شد و تغییرات پارامترهای فیزیکی شامل دما، EC، مواد آلی و رطوبت، پارامترهای شیمیایی شامل TOC, TKN C/N و pH، پارامترهای بیولوژیکی شامل شاخص جوانه‌زنی، کلی‌فرم کل و لیفرم مدفوعی در چهار راکتور12 لیتری سنجش شد. هوادهی با زیروروکردن توده ها به‌صورت هفته‌ای انجام شد. نسبت میزان فضولات مرغی و پسماند آلی شهری و خاک‌اره در راکتورهای A1-A4 به‌ترتیب به‌صورت 7.6:0:2.4، 7:1.5:1.5، 5:3:2 و 3:6:1 بارگزاری گردید و در پایان داده‌ها توسط نرم‌افزار SPSS16 مورد تجزیه‌وتحلیل قرار گرفت.

یافته‌ها: دمای توده در راکتور ها پس از بارگزاری افزایش یافت. مواد آلی نهایی در راکتور A2 وA3  کمتر از راکتورهای دیگر بود. پس از طی 90 روز، حذف مواد آلی در4 راکتور بین 36/5 تا 31/5 درصد بود. مقادیر نهایی pH برای راکتورهای A1-A4 بین 7/1 تا 7/9 بود. در طی فرآیند، هدایت الکتریکی در هر چهار راکتور افزایش یافت و در محدوده‌ی 4/84 تا 4/2 دسی‌زیمنس بر متر قرار گرفت. به‌طور کلی C/N در طول زمان در راکتور‌ها دارای روند کاهشی بود و در نهایت در انتهای فرایند کمپوست‌سازی، نسبت C/N در همه‌ی راکتورها در محدوده‌ی استاندارد قرار داشت. از نظر شاخص جوانه‌زنی به‌ترتیب راکتور A4 ،A3 ،A1 و A2 بیشترین سرعت رشد ریشه بذر و شاخص جوانه‌زنی را داشتند. 

نتیجه‌گیری: نتایج نشان داد که هفته‌ی دهم در فرایند کمپوست‌سازی زمان مناسبی برای رسیدن تمام توده‌ها است. راکتورهای A3 و A4  ازنظر نسبت C/N و شاخص جوانه‌زنی، بهترین راکتورها معرفی شدند. بنابراین مطابق نتایج کمپوست مشترک فضولات مرغی و پسماند آلی شهری یک راه‌حل ساده، امکان‌پذیر و مقرون به‌صرفه برای مدیریت پسماند سلف سرویس و فضولات مرغی مرغداری‌ها است.

کلیدواژه‌ها

عنوان مقاله [English]

Co-composting of Chicken Manure and Organic Fraction of Solid Wastes of Mashhad Medical Sciences Dining Hall

نویسندگان [English]

  • Fateme sadat Khatibi 1
  • Hosein Alidadi 2
  • Behnam Barikbin 2
  • Najmeh Afshar Kohan 3
  • Ali Akbar Dehghan 4

1 MSc in Environmental Health Engineering, Department of Environmental Health Engineering, Faculty of Health, Mashhad University of Medical Sciences, Iran

2 Professor, Department of Environmental Health Engineering, Department of Environmental Health Engineering, Faculty of Health, Mashhad University of Medical Sciences, Iran

3 Environmental Science and Technology Research Center, Department of Environmental Health Engineering, School of Public Health, Shahid Sadoughi University Of Medical Sciences, Yazd, Iran

4 Assistant Professor, Department of Environmental Health Engineering, Department of Environmental Health Engineering, Faculty of Health, Mashhad University of Medical Sciences, Iran

چکیده [English]

Background and purpose: Rapid population growth, increased consumption, and the continuous rise in municipal waste generation pose significant challenges for modern urban society, necessitating a structured waste disposal strategy. Co-composting of organic waste has emerged as an effective method for treating multiple waste streams while mitigating the limitations of conventional composting. This study investigates key stabilization and maturity indicators in the composting process of organic waste and poultry manure.

Materials and Methods: In this experimental study, organic waste was collected from a university cafeteria, poultry manure was sourced from the Ferdowsi University poultry farm, and sawdust, used as a bulking agent, was obtained from various urban locations. The composting process was monitored through 52 sampling events, assessing variations in physical (temperature, electrical conductivity (EC), organic matter content, and moisture), chemical (total organic carbon (TOC), total Kjeldahl nitrogen (TKN), C/N ratio, and pH), and biological (germination index (GI), total coliforms, and fecal coliforms) parameters across four 12-liter reactors. Weekly turning of the compost piles facilitated aeration. The poultry manure, organic waste, and sawdust ratios in reactors A1–A4 were 7.6:0:2.4, 7:1.5:1.5, 5:3:2, and 3:6:1, respectively. Final data analysis was conducted using SPSS 16.

Results: Composting mass temperatures increased across all reactors following the loading process. The final organic matter content was lower in reactors A2 and A3 than the others. After 90 days, organic matter reduction ranged between 31.5% and 36.5% across all reactors. Final pH values varied from 7.1 to 7.9. EC increased in all reactors throughout the composting process, ranging between 4.2 and 4.84 dS/m. The C/N ratio progressively declined, reaching standard limits by the end of the composting process. Regarding the germination index, reactors A4, A3, A1, and A2 exhibited the highest seed root growth rates and germination indices.

Conclusion: Findings indicate that week 10 marks all reactors' optimal compost maturity period. Reactors A3 and A4 demonstrated superior performance regarding the C/N ratio and GI. These results highlight co-composting poultry manure and municipal organic waste as a feasible, cost-effective, and sustainable approach for managing waste generated by university dining halls and poultry farms.
 
Open Access Policy: This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/

کلیدواژه‌ها [English]

  • Chicken Manure
  • Waste
  • Composting
  • Maturation
  • Toxicity
  1. Castaldi P, Garau G, Melis P. Maturity assessment of compost from municipal solid waste through the study of enzyme activities and water-soluble fractions. Waste Management. 2008;28(3):534-40.https://doi.org/10.1016/j.wasman.2007.02.002 PMid:17382530
  2. Sánchez-Monedero M, Roig A, Paredes C, Bernal M. Nitrogen transformation during organic waste composting by the Rutgers system and its effects on pH, EC and maturity of the composting mixtures. Bioresource technology. 2001;78(3):301-8. https://doi.org/10.1016/S0960-8524(01)00031-1 PMid:11341692
  3. Xu Z, Qi C, Zhang L, Ma Y, Li G, Nghiem LD, et al. Regulating bacterial dynamics by lime addition to enhance kitchen waste composting. Bioresource technology. 2021;341:125749. https://doi.org/10.1016/j.biortech.2021.125749 PMid:34416657
  4. Gao X, Xu Z, Li Y, Zhang L, Li G, Nghiem LD, et al. Bacterial dynamics for gaseous emission and humification in bio-augmented composting of kitchen waste. Science of The Total Environment. 2021;801:149640. https://doi.org/10.1016/j.scitotenv.2021.149640 PMid:34416604
  5. Organization WM. Amount of waste produced in Mashhad city 1400 [Available from: https://planning.mashhad.ir/fa/file_manager/608520.html. (In Persian).
  6. Li H, Tan L, Liu W, Li X, Zhang D, Xu Y. Unraveling the effect of added microbial inoculants on ammonia emissions during co-composting of kitchen waste and sawdust: Core microorganisms and functional genes. Science of The Total Environment. 2023;874:162522. https://doi.org/10.1016/j.scitotenv.2023.162522 PMid:36868270
  7. Awasthi MK, Liu T, Chen H, Verma S, Duan Y, Awasthi SK, et al. The behavior of antibiotic resistance genes and their associations with bacterial community during poultry manure composting. Bioresource technology. 2019;280:70-8. https://doi.org/10.1016/j.biortech.2019.02.030 PMid:30754007
  8. Qian X, Gu J, Sun W, Wang X-J, Su J-Q, Stedfeld R. Diversity, abundance, and persistence of antibiotic resistance genes in various types of animal manure following industrial composting. Journal of Hazardous materials. 2018;344:716-22. https://doi.org/10.1016/j.jhazmat.2017.11.020 PMid:29154097
  9. Organization. National Program and Budget. Statistical Center of Iran 1401 [Available from: https://amar.org.ir/salnameh-amari. (In Persian).
  10. Hwang HY, Kim SH, Kim MS, Park SJ, Lee CH. Co-composting of chicken manure with organic wastes: characterization of gases emissions and compost quality. Applied biological chemistry. 2020;63:1-10. https://doi.org/10.1186/s13765-019-0483-8
  11. Jalalipour H, Jaafarzadeh N, Morscheck G, Narra S, Nelles M. Potential of producing compost from source-separated municipal organic waste (A case study in Shiraz, Iran). Sustainability. 2020;12(22):9704. https://doi.org/10.3390/su12229704. (In Persian).
  12. Standard. National Iranian No. 13320. Compost-Sampling and Physical and Chemical Test Methods. Iranian Standards and Industrial Research Organization. 1386. (In Persian).
  13. Thomas C, Idler C, Ammon C, Amon T. Effects of the C/N ratio and moisture content on the survival of ESBL-producing Escherichia coli during chicken manure composting. Waste Management. 2020;105:110-8. https://doi.org/10.1016/j.wasman.2020.01.031 PMid:32044549
  14. Oviedo-Ocaña ER, Hernández-Gómez A, Dominguez I, Alexis Parra-Orobio B, Soto-Paz J, Sánchez A. Evaluation of Co-Composting as an Alternative for the Use of Agricultural Waste of Spring Onions, Chicken Manure and Bio-Waste Produced in Moorland Ecosystems. Sustainability. 2022;14(14):8720. https://doi.org/10.3390/su14148720
  15. Association APH. Standard methods for the examination of water and wastewater: American Public Health Association.; 1926.
  16. Wang G, Yang Y, Kong Y, Ma R, Yuan J, Li G. Key factors affecting seed germination in phytotoxicity tests during sheep manure composting with carbon additives. Journal of Hazardous Materials. 2022;421:126809. https://doi.org/10.1016/j.jhazmat.2021.126809 PMid:34388932
  17. Seidmohammadi A, Asgari G, Torabi L. Removal of Metronidazole using ozone activated persulfate from aqua solutions in presence of ultrasound. Journal of Mazandaran University of Medical Sciences. 2016;26(143):160-73. (In Persian).
  18. Lew S, Glińska-Lewczuk K, Burandt P, Grzybowski M, Obolewski K. Fecal bacteria in coastal lakes: An anthropogenic contamination or natural element of microbial diversity? Ecological Indicators. 2023;152:110370. https://doi.org/10.1016/j.ecolind.2023.110370
  19. Awasthi MK, Wang M, Chen H, Wang Q, Zhao J, Ren X, et al. Heterogeneity of biochar amendment to improve the carbon and nitrogen sequestration through reduce the greenhouse gases emissions during sewage sludge composting. Bioresource technology. 2017;224:428-38. https://doi.org/10.1016/j.biortech.2016.11.014 PMid:27843087
  20. Li M-X, He X-S, Tang J, Li X, Zhao R, Tao Y-Q, et al. Influence of moisture content on chicken manure stabilization during microbial agent-enhanced composting. Chemosphere. 2021;264:128549.https://doi.org/10.1016/j.chemosphere.2020.128549 PMid:33065328
  21. Suhartini S, Wijana S, Wardhani N, Muttaqin S, editors. Composting of chicken manure for biofertiliser production: a case study in Kidal Village, Malang Regency. IOP Conference Series: Earth and Environmental Science; 2020: IOP Publishing. https://doi.org/10.1088/1755-1315/524/1/012016
  22. Qasim W, Lee MH, Moon BE, Okyere FG, Khan F, Nafees M, et al. Composting of chicken manure with a mixture of sawdust and wood shavings under forced aeration in a closed reactor system. International Journal of Recycling of Organic Waste in Agriculture. 2018;7:261-7. https://doi.org/10.1007/s40093-018-0212-z
  23. Kauser H, Pal S, Haq I, Khwairakpam M. Evaluation of rotary drum composting for the management of invasive weed Mikania micrantha Kunth and its toxicity assessment. Bioresource Technology. 2020;313:123678. https://doi.org/10.1016/j.biortech.2020.123678 PMid:32570078
  24. Fan H, Liao J, Abass OK, Liu L, Huang X, Li J, et al. Concomitant management of solid and liquid swine manure via controlled co-composting: Towards nutrients enrichment and wastewater recycling. Resources, Conservation and Recycling. 2021;168:105308. https://doi.org/10.1016/j.resconrec.2020.105308
  25. Young BJ, Rizzo PF, Riera NI, Della Torre V, López VA, Molina CD, et al. Development of phytotoxicity indexes and their correlation with ecotoxicological, stability and physicochemical parameters during passive composting of poultry manure. Waste management. 2016;54:101-9. https://doi.org/10.1016/j.wasman.2016.05.001 PMid:27185192
  26. Zhang D, Luo W, Li Y, Wang G, Li G. Performance of co-composting sewage sludge and organic fraction of municipal solid waste at different proportions. Bioresource technology. 2018;250:853-9. https://doi.org/10.1016/j.biortech.2017.08.136 PMid:30001593
  27. Awasthi MK, Duan Y, Awasthi SK, Liu T, Zhang Z. Influence of bamboo biochar on mitigating greenhouse gas emissions and nitrogen loss during poultry manure composting. Bioresource technology. 2020;303:122952. https://doi.org/10.1016/j.biortech.2020.122952 PMid:32050126
  28. Jalili M, Mokhtari M, Eslami H, Abbasi F, Ghanbari R, Ebrahimi AA. Toxicity evaluation and management of co-composting pistachio wastes combined with cattle manure and municipal sewage sludge. Ecotoxicology and environmental safety. 2019;171:798-804. https://doi.org/10.1016/j.ecoenv.2019.01.056 PMid:30660973 . (In Persian).
  29. EPA U. Method 1680: Fecal Coliforms in Sewage Sludge (Biosolids) by Multiple-Tube Fermentation Using Lauryl Tryptose Broth (Ltb) and Ec Medium. Washington, DC, US EPA. 2010.
  30. Manga M, Muoghalu C, Camargo-Valero MA, Evans BE. Effect of turning frequency on the survival of fecal indicator microorganisms during aerobic composting of fecal sludge with sawdust. International Journal of Environmental Research and Public Health. 2023;20(3):2668. https://doi.org/10.3390/ijerph20032668 PMid:36768034 PMCid:PMC9915456
  31. Kadkhodaei S, Nikaeen M, Hatamzadeh M, Nafez AH, Hassanzadeh A. Monitoring of indicator and pathogenic bacteria during sewage sludge composting process. Journal of Health System Research. 2016;12(2):160-5. (In Persian).