تعهد نامه

نوع مقاله : مقالات پژوهشی

نویسندگان

1 دانشجوی کارشناسی‌ارشد گروه محیط‌زیست، واحد اهواز، دانشگاه آزاداسلامی، اهواز، ایران.

2 گروه محیط‌زیست، واحد اهواز، دانشگاه آزاداسلامی، اهواز، ایران.

چکیده

زمینه و هدف: فلزات سنگین به‌دلیل ماهیت بسیار خطرناک‌ در میان همه‌ی آلاینده‌ها، توسط پژوهشگران، شیمی‌دانان و زیست‌شناسان مورد توجه قرار دارند. این تحقیق در سال 1402 با هدف بررسی آلودگی فلزات سنگین کادمیوم، نیکل و وانادیوم ناشی از پوشش قیر در چشمه قیرماماتین بر روی آب رودخانه اعلاء انجام شد.

مواد و روش ها: در این پژوهش نمونه های آب به‌صورت سیستماتیک از هر ایستگاه با 3 تکرار در فصل تابستان (تیر ماه) و فصل زمستان (بهمن ماه) جمع‌آوری شدند. به‌عبارت دیگر در مجموع از 5 ایستگاه با 3 تکرار در دو فصل سال، 30 نمونه آب تهیه گردید. برای اندازه‌گیری فلزات از دستگاه Optima 8300 ICP-OES ساخت شرکت Perkin Elmer آمریکا استفاده گردید.

یافته ها: میانگین غلظت فلزات سنگین کادمیوم، نیکل و وانادیوم در آب رودخانه‌ی اعلاء به‌ترتیب 0/89، 71/16و 8/10 میلی‌گرم بر لیتر به‌دست آمد. مقایسه‌ی میانگین فلزات سنگین کادمیوم (0/041=Pvalue) و نیکل (0/022=Pvalue) در آب رودخانه‌ی اعلاء در فصل تابستان و زمستان اختلاف معنی‌داری را نشان داد (0/05>p)، اما میانگین غلظت وانادیوم در دو فصل تابستان و زمستان اختلاف معنی‌داری نداشت (0/05<p). میانگین غلظت کادمیوم، نیکل و وانادیوم در آب رودخانه اعلاء در مقایسه با حد آستانه‌ی استاندارد ملی ایران (شماره 1053) و سازمان بهداشت جهانی بالاتر به‌دست آمد (0/05>p) و بر اساس تحلیل واریانس مقادیر کادمیوم (0/034=Pvalue)، نیکل (0/002=Pvalue) و وانادیوم (0/014=Pvalue) در مقایسه با حد مجاز استاندارد ملی ایران (شماره 1053) اختلاف معنی داری داشت (0/05>p).

نتیجه گیری: با توجه به مقادیر نیکل و وانادیوم در ایستگاه‌های پایین دست به‌نظر می رسد که قیر ورودی به رودخانه‌ی اعلاء بر کیفیت آب تاثیر گذاشته است. مقادیر شاخص خطر سرطان‌زایی و شاخص خطر غیرسرطان‌زایی فلزات کادمیوم، نیکل و وانادیوم در آب رودخانه اعلاء نشان داد که مصرف آب این رودخانه برای انسان می‌تواند خطرناک باشد.

کلیدواژه‌ها

عنوان مقاله [English]

Investigation of Heavy Metal Concentrations (Cadmium, Nickel, and Vanadium) in the Water of the Alla River, Ramhormoz City

نویسندگان [English]

  • Seyedeh Razieh Pourmousavi 1
  • Azita Koshafar 2

1 Master's student of Environment, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran

2 Department of Environment, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran.

چکیده [English]

Background and Purpose: Heavy metals are recognized as highly hazardous pollutants, drawing significant attention from researchers, chemists, and biologists. This study, conducted in 2023, aimed to assess the contamination levels of cadmium (Cd), nickel (Ni), and vanadium (V) in the Alla River, potentially influenced by bitumen coating from the Qiramatin spring.

Materials and Methods: Water samples were systematically collected from five stations, with three replicates per station, during summer (July) and winter (February). In total, 30 water samples were obtained across two seasons. Metal concentrations were measured using the Optima 8300 ICP-OES system (Perkin Elmer, USA).

Results: The mean concentrations of Cd, Ni, and V in the Alla River water were 0.89 mg L-1, 71.16 mg L-1, and 8.10 mg L-1, respectively. A comparison of the mean Cd (P=0.041) and Ni (P=0.022) concentrations between summer and winter revealed statistically significant differences (P<0.05). However, seasonal variations in V concentration were not statistically significant (P>0.05). The average concentrations of Cd, Ni, and V exceeded the permissible limits set by both the Iranian National Standard (No. 1053) and the World Health Organization (P<0.05). Analysis of variance confirmed significant deviations of Cd (P=0.034), Ni (P=0.002), and V (P=0.014) from the permissible limits established by the Iranian National Standard (No. 1053) (P< 0.05).

Conclusion: The elevated Ni and V concentrations at downstream stations suggest that bitumen contaminants entering the Alla River have adversely impacted water quality. Furthermore, assessments of the carcinogenic and non-carcinogenic risk indices for Cd, Ni, and V indicate that water consumption from this river poses potential health risks to humans.
 
Open Access Policy: This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/

کلیدواژه‌ها [English]

  • Heavy Metals
  • Non-Carcinogenic Risk Index
  • Carcinogenic Risk Index
  • Alaa River
  • Ramhormoz
  1. Kanwal, H., Raza, A., Zaheer, M.S., Nadeem, M., Ali, H.H., Manoharadas, S., Rizwan, M., Kashif, M.S., Ahmad, U., Ikram, K. and Riaz, M.W., 2024. Transformation of heavy metals from contaminated water to soil, fodder and animals. Scientific Reports, 14(1), p. 11705. https://doi.org/10.1038/s41598-024-62038-7 PMid:38778064 PMCid:PMC11111443
  2. Bansal, O.P., 2020. Health risks of potentially toxic metals contaminated water. Heavy metal toxicity in public health, p.63.
  3. Alam, R., Ahmed, Z. and Howladar, M.F., 2020. Evaluation of heavy metal contamination in water, soil and plant around the open landfill site Mogla Bazar in Sylhet, Bangladesh. Groundwater for Sustainable Development, 10, pp. 100311. https://doi.org/10.1016/j.gsd.2019.100311
  4. Sharma, R., Agrawal, P.R., Kumar, R. and Gupta, G., 2021. Current scenario of heavy metal contamination in water. Contamination of Water, pp. 49-64. https://doi.org/10.1016/B978-0-12-824058-8.00010-4
  5. Ali, H., Khan, E. and Ilahi, I., 2019. Environmental chemistry and ecotoxicology of hazardous heavy metals: environmental persistence, toxicity, and bioaccumulation. Journal of chemistry, 2019(1), p. 6730305. https://doi.org/10.1155/2019/6730305
  6. Algul, F. and Beyhan, M., 2020. Concentrations and sources of heavy metals in shallow sediments in Lake Bafa, Turkey. Scientific reports, 10(1), p.11782. https://doi.org/10.1038/s41598-020-68833-2 PMid:32678245 PMCid:PMC7366620
  7. Velayatzadeh, M. and Payandeh, K., 2020. Effect of household water treatment on the concentration of heavy metals of drinking water in Ahvaz city. Iranian South Medical Journal, 22(6), pp.402-414. (In Persian). https://doi.org/10.29252/ismj.22.6.402
  8. Hussain, J., Husain, I., Arif, M. and Gupta, N., 2017. Studies on heavy metal contamination in Godavari river basin. Applied Water Science, 7, pp. 4539-4548. https://doi.org/10.1007/s13201-017-0607-4
  9. Hashim, M.A., Mukhopadhyay, S., Sahu, J.N. and Sengupta, B., 2011. Remediation technologies for heavy metal contaminated groundwater. Journal of environmental management, 92(10), pp. 2355-2388. https://doi.org/10.1016/j.jenvman.2011.06.009 PMid:21708421
  10. Jarup, L., 2003. Hazards of heavy metal contamination. British medical bulletin, 68(1), pp. 167-182. https://doi.org/10.1093/bmb/ldg032 PMid:14757716
  11. Jonathan, M.P., Ram-Mohan, V. and Srinivasalu, S., 2004. Geochemical variations of major and trace elements in recent sediments, off the Gulf of Mannar, the southeast coast of India. Environmental Geology, 45, pp. 466-480. https://doi.org/10.1007/s00254-003-0898-7
  12. Barbieri, M., 2016. The importance of enrichment factor (EF) and geoaccumulation index (Igeo) to evaluate the soil contamination. Journal of Geology & Geophysics, 5(1), pp. 1-4. https://doi.org/10.4172/2381-8719.1000237
  13. Moghadam, S.M., Payandeh, K., Koushafar, A., Goosheh, M. and Rouzbahani, M.M., 2024. Human health risk assessment and carcinogenicity due to exposure to potentially toxic elements on soil pollution in Southwest Iran. Clinical Epidemiology and Global Health, 25, p.101492. https://doi.org/10.1016/j.cegh.2023.101492
  14. Goodman, J.E., Prueitt, R.L., Thakali, S. and Oller, A.R., 2011. The nickel ion bioavailability model of the carcinogenic potential of nickel-containing substances in the lung. Critical reviews in toxicology, 41(2), pp. 142-174. https://doi.org/10.3109/10408444.2010.531460 PMid:21158697
  15. Al Marshoudi, M., Al Reasi, H.A., Al-Habsi, A. and Barry, M.J., 2023. Additive effects of microplastics on accumulation and toxicity of cadmium in male zebrafish. Chemosphere, 334, p.138969. https://doi.org/10.1016/j.chemosphere.2023.138969 PMid:37244557
  16. da Silva, A.O.F., Bezerra, V., Meletti, P.C., Simonato, J.D. and dos Reis Martinez, C.B., 2023. Cadmium effects on the freshwater teleost Prochilodus lineatus: Accumulation and biochemical, genotoxic, and behavioural biomarkers. Environmental Toxicology and Pharmacology, 99, p. 104121. https://doi.org/10.1016/j.etap.2023.104121 PMid:37030645
  17. Gao, S., Kang, X., Li, Y., Yu, J., Wang, H., Pan, H., Yang, Q., Yang, Z., Sun, Y., Zhuge, Y. and Lou, Y., 2024. Treatment of Cadmium-Contaminated Water Systems Using Modified Phosphate Rock Powder: Contaminant Uptake, Adsorption Ability, and Mechanisms. Water, 16(6), p. 862. https://doi.org/10.3390/w16060862
  18. Hui, C.Y., Guo, Y., Li, H., Gao, C.X. and Yi, J., 2022. Detection of environmental pollutant cadmium in water using a visual bacterial biosensor. Scientific reports, 12(1), p. 6898. https://doi.org/10.1038/s41598-022-11051-9 PMid:35477977 PMCid:PMC9046199
  19. Akaras, N., Ileriturk, M., Gur, C., Kucukler, S., Oz, M. and Kandemir, F.M., 2023. The protective effects of chrysin on cadmium-induced pulmonary toxicity; a multi-biomarker approach. Environmental Science and Pollution Research, 30(38), pp. 89479-89494. https://doi.org/10.1007/s11356-023-28747-8 PMid:37453011
  20. Rizwan, M., Usman, K. and Alsafran, M., 2024. Ecological impacts and potential hazards of nickel on soil microbes, plants, and human health. Chemosphere, p. 142028. https://doi.org/10.1016/j.chemosphere.2024.142028 PMid:38621494
  21. Salehi, F., Esmaeilbeigi, M., Kazemi, A., Sharafi, S., Sahebi, Z. and Asl, A.G., 2024. Spatial health risk assessments of nickel in the groundwater sources of a mining-impacted area. Scientific Reports, 14(1), p. 11017. https://doi.org/10.1038/s41598-024-61914-6 PMid:38745041 PMCid:PMC11094187
  22. Parades-Aguilar, J., Reyes-Martinez, V., Bustamante, G., Almendariz-Tapia, F.J., Martinez-Meza, G., Vílchez-Vargas, R., Link, A., Certucha-Barragan, M.T. and Calderon, K., 2021. Removal of nickel (II) from wastewater using a zeolite-packed anaerobic bioreactor: Bacterial diversity and community structure shifts. Journal of Environmental Management, 279, p. 111558. https://doi.org/10.1016/j.jenvman.2020.111558 PMid:33221046
  23. El-Naggar, A., Ahmed, N., Mosa, A., Niazi, N.K., Yousaf, B., Sharma, A., Sarkar, B., Cai, Y. and Chang, S.X., 2021. Nickel in soil and water: Sources, biogeochemistry, and remediation using biochar. Journal of hazardous materials, 419, p. 126421. https://doi.org/10.1016/j.jhazmat.2021.126421 PMid:34171670
  24. Zhang, H., Pu, M., Li, H., Lu, B., Zhang, X., Li, S., Zhao, C., Pu, W., Liu, R., Guo, K. and Zhang, T., 2024. Progress and prospects for remediation of soil potentially toxic elements pollution: A state-of-the-art review. Environmental Technology & Innovation, p. 103703. https://doi.org/10.1016/j.eti.2024.103703
  25. Bogusz, A. and Oleszczuk, P., 2018. Sequential extraction of nickel and zinc in sewage sludge-or biochar/sewage sludge-amended soil. Science of the Total Environment, 636, p. 927-935. https://doi.org/10.1016/j.scitotenv.2018.04.072 PMid:29729510
  26. Liden, C., Skare, L. and Vahter, M., 2008. Release of nickel from coins and deposition onto skin from coin handling-comparing euro coins and SEK. Contact Dermatitis, 59(1), pp. 31-37. https://doi.org/10.1111/j.1600-0536.2008.01363.x PMid:18537991
  27. Vasseghian, Y., Rad, S.S., Vilas-Boas, J.A. and Khataee, A., 2021. A global systematic review, meta-analysis, and risk assessment of the concentration of vanadium in drinking water resources. Chemosphere, 267, p. 128904. https://doi.org/10.1016/j.chemosphere.2020.128904 PMid:33199109
  28. Bahr, C., Jekel, M. and Amy, G., 2022. Vanadium removal from drinking water by fixedbed adsorption on granular ferric hydroxide. AWWA Water Science, 4(1), p. e1271. https://doi.org/10.1002/aws2.1271
  29. Dabizha, A., Bahr, C. and Kersten, M., 2020. Predicting breakthrough of vanadium in fixed-bed absorbent columns with complex groundwater chemistries: A multi-component granular ferric hydroxide− vanadate− arsenate− phosphate− silicic acid system. Water research X, 9, p. 100061. https://doi.org/10.1016/j.wroa.2020.100061 PMid:32817931 PMCid:PMC7426449
  30. Gustafsson, J.P., 2019. Vanadium geochemistry in the biogeosphere-speciation, solid-solution interactions, and ecotoxicity. Applied geochemistry, 102, pp. 1-25. https://doi.org/10.1016/j.apgeochem.2018.12.027
  31. Xiong, C., Qin, Y. and Hu, B., 2010. On-line separation/preconcentration of V (IV)/V (V) in environmental water samples with CTAB-modified alkyl silica microcolumn and their determination by inductively coupled plasma-optical emission spectrometry. Journal of hazardous materials, 178(1-3), pp. 164-170. https://doi.org/10.1016/j.jhazmat.2010.01.058 PMid:20133063
  32. Li, M., Zhang, B., Zou, S., Liu, Q. and Yang, M., 2020. Highly selective adsorption of vanadium (V) by nano-hydrous zirconium oxide-modified anion exchange resin. Journal of Hazardous Materials, 384, p. 121386. https://doi.org/10.1016/j.jhazmat.2019.121386 PMid:31635822
  33. Aihemaiti, A., Gao, Y., Meng, Y., Chen, X., Liu, J., Xiang, H., Xu, Y. and Jiang, J., 2020. Review of plant-vanadium physiological interactions, bioaccumulation, and bioremediation of vanadium-contaminated sites. Science of the Total Environment, 712, p. 135637. https://doi.org/10.1016/j.scitotenv.2019.135637 PMid:31810710
  34. Zwolak, I., 2014. Vanadium carcinogenic, immunotoxic and neurotoxic effects: a review of in vitro studies. Toxicology mechanisms and methods, 24(1), pp. 1-12. https://doi.org/10.3109/15376516.2013.843110 PMid:24147425
  35. Taghipour, Sh., Hasanzadeh, M. andHosseini Sarqin, S., 2011. Introduction of flora, biological form and geographical distribution of Ala and Rudozard region of Khuzestan province. Journal of Taxonomy and Biosystematics, 3(9), pp. 15-30. (In Persian).
  36. Latkoczy, C., Becker, S., Ducking, M., Gunther, D., Hoogewerff, J.A., Almirall, J.R., Buscaglia, J., Dobney, A., Koons, R.D., Montero, S. and Van Der Peijl, G.J., 2005. Development and evaluation of a standard method for the quantitative determination of elements in float glass samples by LA-ICP-MS. Journal of Forensic Sciences, 50(6), p. JFS2005091-15. https://doi.org/10.1520/JFS2005091
  37. Hou, X. and Jones, B.T. 2000. Inductively coupled plasma/optical emission spectrometry. Encyclopedia of Analytical Chemistry, pp. 9468-9485. https://doi.org/10.1002/9780470027318.a5110
  38. USEPA. 1989. Risk assessment guidance for superfund. Human Health Evaluation Manual, Part A. EPA/540/1 - 89/002. Office of Health and Environmental Assessment, Washington, DC, USA.
  39. Ullah, A.A., Maksud, M.A., Khan, S.R., Lutfa, L.N. and Quraishi, S.B., 2017. Dietary intake of heavy metals from eight highly consumed species of cultured fish and possible human health risk implications in Bangladesh. Toxicology Reports, 4, pp. 574-579. https://doi.org/10.1016/j.toxrep.2017.10.002 PMid:29152462 PMCid:PMC5671616
  40. Aghayani, E., Shekoohiyan, S., Behnami, A., Abdolahnejad, A., Pourakbar, M., Haghnazar H., Mahdavi, V. and Mohammadi, A. 2023. Health risk assessment due to the presence of heavy metals in drinking water resources of Maragheh city. Iranian Journal of Health and Environment, 16 (1), pp. 31-52. (In Persian).
  41. UEPA, 2000. Risk-based concentration table. Philadelphia PA: United States Environmental Protection Agency, Washington DC.
  42. Doabi, S.A., Karami, M., Afyuni, M., Yeganeh, M. 2018. Pollution and health risk assessment of heavy metals in agricultural soil, atmospheric dust and major food crops in Kermanshah province, Iran. Ecotoxicology and Environmental Safety, 163, pp. 153-164. https://doi.org/10.1016/j.ecoenv.2018.07.057 PMid:30053585
  43. Wang, X., Sato, T., Xing, B. and Tao, S., 2005. Health risks of heavy metals to the general public in Tianjin, China via consumption of vegetables and fish. Science of the total environment, 350 (1-3), pp. 28-37. https://doi.org/10.1016/j.scitotenv.2004.09.044 PMid:16227070
  44. Farhadi, N., Orak, N. and Bani Naimeh, S., 2017. Investigation of the causes of the change in the course of the Ala River in the Ramhormoz alluvial fan. The 5th National Conference on Geomorphology and Environmental Challenges, Mashhad, p. 5. (In Persian).
  45. Baluti, H. and Yaqoutzadeh, G.R., 2019. Classification of surface waters and groundwater in terms of drinking, agriculture and industry (case study of the Saidun River, Ala and the Gulal Dopran well and Seyyed Behzad seepage). Journal of Water Sciences and Engineering, 9 (23), pp. 57-70. (In Persian).
  46. Al-Saleh, I. and Shinwari, N., 2001. Report on the levels of cadmium, lead, and mercury in imported rice grain samples. Biological Trace Element Research, 83(1), pp. 91-96. https://doi.org/10.1385/BTER:83:1:91 PMid:11694006
  47. Lin, H.T., Wong, SS. and Li, G.C., 2004. Heavy metal content of rice and Shellfish in Taiwan. Journal of Food and Drug Analysis, 12 (2), pp. 167-174. https://doi.org/10.38212/2224-6614.2649
  48. Firoozi,, M.A., Mohammadi, D.C.M. and Saeedi, J., 2017. Evaluation of environmental instability indicators with emphasis on water, soil and noise pollutions using Analytical Hierarchy Process (AHP) in Ahvaz metropolis. Journal of Environmental Science and Technology, 19 (3), pp. 67-81. (In Persian).
  49. Fu, F. and Wang, Q., 2011. Removal of heavy metal ions from wastewaters: a review. Journal of environmental management, 92(3), pp. 407-418. https://doi.org/10.1016/j.jenvman.2010.11.011 PMid:21138785
  50. da Silva Junior, J.B., de Carvalho, V.S., Sousa, D.S., Dos Santos, I.F., Brito, G.B., Queiroz, A.F. and Ferreira, S.L., 2022. A risk assessment by metal contamination in a river used for public water supply. Marine Pollution Bulletin, 179, pp. 113730. https://doi.org/10.1016/j.marpolbul.2022.113730 PMid:35537302
  51. Kluska, M. and Jablonska, J., 2023. Variability and Heavy Metal Pollution Levels in Water and Bottom Sediments of the Liwiec and Muchawka Rivers (Poland). Water, 15, p. 2833. https://doi.org/10.3390/w15152833
  52. Patel, P., Raju, N.J., Reddy, B.S.R., Suresh, U., Sankar, D.B. and Reddy, T.V.K., 2018. Heavy metal contamination in river water and sediments of the Swarnamukhi River Basin, India: risk assessment and environmental implications. Environmental geochemistry and health, 40, pp. 609-623. https://doi.org/10.1007/s10653-017-0006-7 PMid:28695304
  53. Kumar, S., Rahman, M.A., Islam, M.R., Hashem, M.A. and Rahman, M.M., 2022. Lead and other elements-based pollution in soil, crops and water near a lead-acid battery recycling factory in Bangladesh. Chemosphere, 290, p. 133288. https://doi.org/10.1016/j.chemosphere.2021.133288 PMid:34921850
  54. Rashmi, I., Roy, T., Kartika, K.S., Pal, R., Coumar, V., Kala, S. and Shinoji, K.C., 2020. Organic and inorganic fertilizer contaminants in agriculture: Impact on soil and water resources. Contaminants in Agriculture: Sources, Impacts and Management, pp. 3-41. https://doi.org/10.1007/978-3-030-41552-5_1
  55. Rather, R.A., Ara, S., Sharma, S., Padder, S.A., Lone, F.A., Mir, S.A., Baba, Z.A., Ayoub, I.B., Mir, I.A., Bhat, T.A. and Baba, T.R., 2022. Seasonal changes and determination of heavy metal concentrations in Veshaw River of the Indian western Himalaya. Frontiers in Environmental Chemistry, 3, p. 1018576. https://doi.org/10.3389/fenvc.2022.1018576
  56. Bostanzadeh, M., Roomiani, L., Payandeh, K., Sabzalipour, S. and Mohammadi Roozbehani, M., 2022. Risk assessment of aromatic hydrocarbon transfers cyclic through fish consumption (case study: Mesopotamichthys sharpeyi of Huralazim wetland in Iran). Iranian Journal of Fisheries Sciences, 21(2), pp.355-371.
  57. Zeraatkari, S., Shakeri, A. and Rastegari Mehr, M., 2021. Evaluation of heavy metals concentration in surface sediments of the Mordab river and parts of the Caspian Sea coast in Astara county. Iranian Journal of Health and Environment, 14 (1), pp. 83-98. (In Persian).
  58. Timoney, K.P. and Ronconi, R.A., 2010. Annual bird mortality in the bitumen tailings ponds in northeastern Alberta, Canada. The Wilson Journal of Ornithology, 122(3), pp. 569-576. https://doi.org/10.1676/09-181.1
  59. Timoney, K.P. and Lee, P., 2011. Polycyclic aromatic hydrocarbons increase in Athabasca River Delta sediment: temporal trends and environmental correlates. Environmental science & technology, 45(10), pp. 4278-4284. https://doi.org/10.1021/es104375d PMid:21520949
  60. Atojunere, E.E. and Ogedengbe, K., 2019. Evaluating water quality indicators of some water sources in the bitumen-rich areas of Ondo State, Nigeria. Journal ISSN, 1929, p. 2732. https://doi.org/10.11159/ijepr.2019.002
  61. Saeedi, M., Karbasi, A., Nabi Bidhendi, G.R. and Mehrdadi, N., 2006. The effect of human activities on the accumulation of heavy metals in the water of Tajan River in Mazandaran Province. Journal of Environmental Studies, 32 (40), pp. 50-41. (In Persian).
  62. Arain, M.A., Wattoo, F.H., Wattoo, M.H.S., Ghanghro, A.B., Tirmizi, S.A., Iqbal, J. and Arain, S.A., 2009. Simultaneous determination of metal ions as complexes of pentamethylene dithiocarbamate in Indus river water, Pakistan. Arabian Journal of Chemistry, 2(1), pp. 25-29. https://doi.org/10.1016/j.arabjc.2009.07.007
  63. Reza, R. and Singh, G., 2010. Heavy metal contamination and its indexing approach for river water. International Journal of Environmental Science & Technology, 7, pp. 785-792. https://doi.org/10.1007/BF03326187
  64. Maphanga, T., Chidi, B.S., Phungela, T.T., Gqomfa, B., Madonsela, B.S., Malakane, K.C., Lekata, S. and Shale, K., 2024. The interplay between temporal and seasonal distribution of heavy metals and physiochemical properties in Kaap River. International Journal of Environmental Science and Technology, 21 (7), pp. 6053-6064. https://doi.org/10.1007/s13762-023-05401-x
  65. Yu, H., Lin, M., Peng, W. and He, C., 2022. Seasonal changes of heavy metals and health risk assessment based on Monte Carlo simulation in alternate water sources of the Xinbian River in Suzhou City, Huaibei Plain, China. Ecotoxicology and Environmental Safety, 236, p. 113445. https://doi.org/10.1016/j.ecoenv.2022.113445 PMid:35378402
  66. Li, S. and Zhang, Q., 2010. Risk assessment and seasonal variations of dissolved trace elements and heavy metals in the Upper Han River, China. Journal of hazardous materials, 181(1-3), pp. 1051-1058. https://doi.org/10.1016/j.jhazmat.2010.05.120 PMid:20638969
  67. Teng, Y., Ni, S., Zhang, C., Wang, J., Lin, X. and Huang, Y., 2006. Environmental geochemistry and ecological risk of vanadium pollution in Panzhihua mining and smelting area, Sichuan, China. Chinese Journal of Geochemistry, 25, pp. 379-385. https://doi.org/10.1007/s11631-006-0378-3
  68. Kocak, N., Sahin, M. and Gubbuk, I.H., 2012. Synthesized of sporopollenin-immobilized Schiff bases and their vanadium (IV) sorption studies. Journal of Inorganic and Organometallic Polymers and Materials, 22, pp. 852-859. https://doi.org/10.1007/s10904-011-9646-8
  69. Ghosh, S.K., Saha, R. and Saha, B., 2015. Toxicity of inorganic vanadium compounds. Research on Chemical Intermediates, 41, pp. 4873-4897. https://doi.org/10.1007/s11164-014-1573-1
  70. Wuilloud, R.G., Salonia, J.A., Gasquez, J.A., Olsina, R.A. and Martinez, L.D., 2000. On-line pre-concentration system for vanadium determination in drinking water using flow injection-inductively coupled plasma atomic emission spectrometry. Analytica Chimica Acta, 420(1), pp. 73-79. https://doi.org/10.1016/S0003-2670(00)01010-2
  71. Obasi, P.N. and Akudinobi, B.B., 2020. Potential health risk and levels of heavy metals in water resources of lead-zinc mining communities of Abakaliki, southeast Nigeria. Applied Water Science, 10(7), pp. 1-23. https://doi.org/10.1007/s13201-020-01233-z
  72. Zhang, X., Wu, Q., Gao, S., Wang, Z. and He, S., 2021. Distribution, source, water quality and health risk assessment of dissolved heavy metals in major rivers in Wuhan, China. Peer Journal, 9, pp. e11853. https://doi.org/10.7717/peerj.11853 PMid:34395088 PMCid:PMC8323599
  73. Onjia, A., Huang, X., Trujillo González, J.M. and Egbueri, J.C., 2022. Chemometric approach to distribution, source apportionment, ecological and health risk of trace pollutants. Frontiers in Environmental Science, 10, pp. 1107465. https://doi.org/10.3389/fenvs.2022.1107465
  74. Fan, J., Deng, L., Wang, W., Yi, X. and Yang, Z., 2022. Contamination, source identification, ecological and human health risks assessment of potentially toxic-elements in soils of typical rare-earth mining areas. International Journal of Environmental Research and Public Health, 19(22), p. 15105. https://doi.org/10.3390/ijerph192215105 PMid:36429823 PMCid:PMC9690513
  75. Taghavi, M., Darvishiyan, M., Momeni, M., Eslami, H., Fallahzadeh, R.A. and Zarei, A., 2023. Ecological risk assessment of trace elements (TEs) pollution and human health risk exposure in agricultural soils used for saffron cultivation. Scientific Reports, 13(1), p. 4556. https://doi.org/10.1038/s41598-023-31681-x PMid:36941314 PMCid:PMC10027692
  76. Wei, M., Pan, A., Ma, R. and Wang, H., 2023. Distribution characteristics, source analysis and health risk assessment of heavy metals in farmland soil in Shiquan County, Shaanxi Province. Process Safety and Environmental Protection, 171, pp. 225-237. https://doi.org/10.1016/j.psep.2022.12.089
  77. Dippong, T., Senila, M., Cadar, O. and Resz, M.A., 2024. Assessment of the heavy metal pollution degree and potential health risk implications in lakes and fish from northern Romania. Journal of Environmental Chemical Engineering, 12(2), p.112217. https://doi.org/10.1016/j.jece.2024.112217