تعهد نامه

نوع مقاله : مقالات پژوهشی

نویسندگان

گروه مهندسی محیط زیست، واحد اهواز، دانشگاه آزاد اسلامی، اهواز، ایران.

چکیده

زمینه و هدف: سرب جزء فلزات سمی می‌باشد که نقش زیستی در بدن موجودات زنده ندارد و می‌تواند منجر به مسمومیت و بیماری در انسان شود. این مطالعه به منظور بررسی وضعیت آلودگی به سرب با گونه‌های درختی غالب کاشته شده در محدوده شهری شهرستان شوش به عنوان ردیاب زیستی انجام شد. 

مواد و روش‌ها: نمونه‌برداری از 2 گونه برهان و اوکالیپتوس در طول یک سال در 4 ایستگاه پرترافیک و کم‌ترافیک در محدوده شهری انجام شد. نمونه‌گیری از خاک محل رویش درخت‌ها از عمق صفر تا 30 سانتی‌متر و نمونه برگ گیاهان از ارتفاع 2 متر از سطح زمین در چهار جهت و در سه تکرار صورت گرفت. نمونه‌های برگ و خاک به تعداد 120 عدد برای تجزیه شیمیایی به آزمایشگاه منتقل شدند.

یافته‌ها: بیشترین میانگین غلظت سرب در زمستان 1398 در خاک پای درختان در ایستگاه پرترافیک4/6±1183/2 میلی‌گرم بر کیلوگرم و در برگ‌های شسته‌نشده درخت برهان در ایستگاه کم‌ترافیک4/2±95/1 میلی‌گرم بر کیلوگرم بود. در فصل تابستان 1399 به ترتیب بیشترین و کمترین میزان سرب در خاک پای درختان ایستگاه پرترافیک 7/3±1056/2میلی‌گرم بر کیلوگرم و در برگ‌های شسته‌نشده درخت برهان در ایستگاه کم‌ترافیک 1/4±95/3 میلی‌گرم بر کیلوگرم به دست آمد.

نتیجه‌گیری: با توجه به این که میزان ضریب تجمع زیستی در هیچ یک از نمونه‌ها بیشتر از 1 نبود، می‌توان نتیجه گرفت گونه‌های برهان و اوکالیپتوس توانایی چندانی برای انتقال سرب موجود در خاک به اندام هوایی خود، همچنین توانایی جذب سرب احتمالی موجود در فضای رشد خود را ندارند و نمی‌توان آن‌ها را جزء گیاهان زیست ردیاب درنظر گرفت. 

کلیدواژه‌ها

عنوان مقاله [English]

The study of the traceability of lead heavy metal in the leaves of eucalyptus (Eucalyptus microtheca) and Burhan (Albizia lebbeck) trees in Shush city

نویسندگان [English]

  • Abdoreza Pour Gholam Khabaz
  • Maryam Velayatzadeh

Department of Environment, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran

چکیده [English]

Background and Purpose: This study aimed to investigate Pb pollution levels in the urban area of Shush City, utilizing dominant tree species as biological tracers.

Materials and Methods: Sampling was conducted over one year, targeting two tree species, Albizia lebbeck and Eucalyptus microtheca, at four locations with varying traffic levels in the urban area. Soil samples were collected from zero to 30 cm where the trees were situated, and leaves were gathered from 2 meters above the ground, covering four cardinal directions and performed in triplicate. 120 leaf and soil samples were transported to the laboratory for chemical analysis.

Results: The highest average concentration of Pb in the winter of 2018 was recorded as 1183.2±4.6 mg/kg in the soil beneath the trees at the high-traffic station and 95.1±2.4 mg/kg in the unwashed leaves of Albizia lebbeck at the low-traffic station. During the summer season of 2019, Pb concentrations were 1056±2.7±3.3 mg/kg in the soil beneath the trees at the high-traffic station and 95.3±1.4 mg/kg in the unwashed leaves of the Albizia lebbeck tree at the low-traffic station.

Conclusion: With bioaccumulation coefficients in all samples remaining below 1, it can be concluded that neither Albizia lebbeck nor Eucalyptus microtheca species possess a significant capacity for transferring heavy metals from the soil to their aerial organs. Additionally, they do not appear to absorb the available lead within their growth environment, making them unsuitable as bio-tracer plants

کلیدواژه‌ها [English]

  • heavy metal pollution
  • Lead metal
  • pollution biomarker
  • Eucalyptus microtheca
  • Albizia lebbeck
1. Hussain, B., Ashraf, M.N., Abbas, A., Li, J. and Farooq, M., 2021. Cadmium stress in paddy fields: effects of soil conditions and remediation strategies. Science of the Total Environment, 754, p.142188.
https://doi.org/10.1016/j.scitotenv.2020.142188
PMid:33254942
 
2. Yasir, M.W., Siddique, M.B.A., Shabbir, Z., Ullah, H., Riaz, L. and Shah, A.A., 2021. Biotreatment potential of co-contaminants hexavalent chromium and polychlorinated biphenyls in industrial wastewater: Individual and simultaneous prospects. Science of the Total Environment, 779, p.146345.
https://doi.org/10.1016/j.scitotenv.2021.146345
PMid:33752007
 
3. Xuebin, Q., Tariq, A., Zhao, Z., Ashraf, M.N., Jiaxin, C. and Mehmood, F., 2020. Silicon attenuates acidic and alkaline stress in wheat plant by improving nutrient availability, membrane stability index and antioxidant defense system. International Journal of Agriculture and Biology, 24(3), pp.553-562.
 
4. Antoniadis, V., Shaheen, S.M., Stark, H.J., Wennrich, R., Levizou, E., Merbach, I. and Rinklebe, J., 2021. Phytoremediation potential of twelve wild plant species for toxic elements in a contaminated soil. Environment International, 146, p.106233.
https://doi.org/10.1016/j.envint.2020.106233
PMid:33189990
 
5. Yasin, G., Ur Rahman, S., Yousaf, M.T.B., Azhar, M.F., Zahid, D.M., Imtiaz, M. and Hussain, B., 2021. Phytoremediation potential of E. camaldulensis and M. alba for copper, cadmium, and lead absorption in urban areas of Faisalabad City, Pakistan. International Journal of Environmental Research, 15, pp.597-612.
https://doi.org/10.1007/s41742-021-00330-4
 
6. Yang, W., Zhao, F., Wang, Y., Ding, Z., Yang, X. and Zhu, Z., 2020. Differences in uptake and accumulation of copper and zinc by Salix clones under flooded versus non-flooded conditions. Chemosphere, 241, p.125059.
https://doi.org/10.1016/j.chemosphere.2019.125059
PMid:31606571
 
7. Sadat Hosseini, N. and Sobhan Ardakani, S. 2023. Assessment of level and source identification of heavy metals in the surface soil of the roadside: A case study. Journal of Research in Environmental Health, 9 (2): 197-214. [In Persian].
 
8. Opoku, P., Gikunoo, E., Arthur, E.K. and Foli, G., 2020. Removal of selected heavy metals and metalloids from an artisanal gold mining site in Ghana using indigenous plant species. Cogent Environmental Science, 6(1), p.1840863.
https://doi.org/10.1080/23311843.2020.1840863
 
9. Fazel Valipour, M.E. 2021. Investigation of soil heavy metals concentrations (As, Cd, Co, Cr and Ni) in region Dehnov Shandiz. Journal of Research in Environmental Health, 7 (3): 216-225. [In Persian].
 
10. Li, C., Zhou, K., Qin, W., Tian, C., Qi, M., Yan, X. and Han, W., 2019. A review on heavy metals contamination in soil: effects, sources, and remediation techniques. Soil and Sediment Contamination: An International Journal, 28(4), pp.380-394.
https://doi.org/10.1080/15320383.2019.1592108
 
11. Salmani-Ghabeshi, S., Fadic-Ruiz, X., Miro-Rodriguez, C., Pinilla-Gil, E. and Cereceda-Balic, F., 2021. Trace element levels in native plant species around the industrial site of Puchuncaví-Ventanas (Central Chile): Evaluation of the phytoremediation potential. Applied Sciences, 11(2), p.713.
https://doi.org/10.3390/app11020713
 
12. Mitra, A., Chatterjee, S., Voronina, A.V., Walther, C. and Gupta, D.K., 2020. Lead toxicity in plants: a review. Lead in Plants and the Environment, pp.99-116.
https://doi.org/10.1007/978-3-030-21638-2_6
 
13. Nas, F.S. and Ali, M., 2018. The effect of lead on plants in terms of growing and biochemical parameters: a review. MOJ Ecol. Environ. Sci, 3(4), pp.265-268.
https://doi.org/10.15406/mojes.2018.03.00098
 
14. Sabir, M.A., Guo, W., Nawaz, M.F., Yasin, G., Yousaf, M.T.B., Gul, S., Hussain, T. and Rahman, S.U., 2023. Assessing the effects of limestone dust and lead pollution on the ecophysiology of some selected urban tree species. Frontiers in Plant Science, 14, p.1144145.
https://doi.org/10.3389/fpls.2023.1144145
PMid:37255552 PMCid:PMC10225577
 
15. Abbaszadeh, H., Mohammadi Roozbahani, M. and Sobhanardakani, S., 2019. Use of Ziziphus spina-christi and Prosopis cineraria leaves as bio-indicators of environmental pollution emitted from industrial areas. Iranian Journal of Health and Environment 12 (1), 87-100. [In Persian].
 
16. Kolah Kaj, A. and Mohammadi Rozbahani, M., 2017. Survey Effectiveness of Althea officinal in Pb Heavy Metal Accumulation. Journal of Environmental Science and Technology 19 (1), 93-102.[In Persian].
 
17. El-Khatib, A.A., Youssef, N.A., Barakat, N.A. and Samir, N.A., 2020. Responses of Eucalyptus globulus and Ficus nitida to different potential of heavy metal air pollution. International Journal of Phytoremediation, 22(10), pp.986-999.
https://doi.org/10.1080/15226514.2020.1719031
PMid:32037853
 
18. Alsihany, M.M., Ghoneim, A.M. and Bukhari, N.A., 2019. Transfer and accumulation of some heavy metals in native vegetation plants. International Journal of Plant & Soil Science 28(4), 1-10.
https://doi.org/10.9734/ijpss/2019/v28i430113
 
19. Nangbes, J.G., Choji, V.C., Terver, J.S. and Daring, K.E., 2018. Distribution of Heavy Metals Using Eucalyptus Spp as Bioindicator in Farmlands of Jos South LGA, Plateau State, Nigeria.International Journal of Trend in Research and Development,5 (1): 60-63.
 
20. Torkashvand, V., Mohammadi Rouzbahni, M. and Babaeinezhad, T. 2018. Survey of heavy metals (Pb,Ni,Cr,Cd ) bio-accumulation in the leaves of (Albizia lebbek and Eucalyotus camadulensis) (case stady: Iran National Steel Industrial Group). Journal of Neyshabur University of Medical Sciences 6 (1), 33-43. [In Persian].
 
21. Rafati, M., Mohammadi Rozbahani, M. And Naseri Monfared, H. 2021. Accumulation of heavy metals (lead and nickel) by the soil and leaves of Albizia lebbeck and Conocarpus erectus from the city of Ahwaz. Journal of Forest and Wood Products 73 (4), 379-387. [In Persian].
 
22. Moein, F., Kalantari, K., Asadi, A. & Kurd Alivand, S. 2021. Factors affecting wheat waste from the perspective of villagers in Shush. Space Economy& Rural Development 10 (36), 99-118.
 
23.Bahemuka, T. E. & Mubofu, E. B. 1999. Heavy metals in edible green vegetables grown along the sites of the Sinza and Msimbazi rivers in Dar es Salaam, Tanzania. Food Chemistry 66(1), 63-66.
https://doi.org/10.1016/S0308-8146(98)00213-1
 
24. Johnson, C.M. & Ulrich, A. 1959. Analytical Methods for Use in Plant Analysis. Bulletin 766. University of California Agricultural Experiment Station, Berkeley, C A.
 
25. Kimbrough, D.E. & Wakakuwa, J.R. 1989. Acid digestion for sediments, sludges, soils, and solid wastes. A proposed alternative to EPA SW 846 Method 3050. Environmental science & technology23 (7), 898-900.
https://doi.org/10.1021/es00065a021
 
26. Mohammadi, M., Hedayati, A.A., Forouhar Vajargah, M., Pirali, A.R. and Fallah, M. 2021. Zonation of heavy metal distribution of surface sediments in Anzali wetland Using Geographical Information System (GIS). Journal of Research in Environmental Health, 7 (4): 323-331. [In Persian].
 
27. Yakupoglu, D., Guray, T., Sarica, D.Y. and Kaya, Z., 2008. Determination of airborne lead contamination in Cichorium intybus L. in an urban environment. Turkish Journal of Botany, 32(4), pp.319-324.
 
28. Aslam, J., Khan, S.A. and Khan, S.H., 2013. Heavy metals contamination in roadside soil near different traffic signals in Dubai, United Arab Emirates. J Saudi Chem Soc., 17: 315-319.
https://doi.org/10.1016/j.jscs.2011.04.015
 
29.Szwalec, A., Mundała, P., Kędzior, R. and Pawlik, J., 2020. Monitoring and assessment of cadmium, lead, zinc and copper concentrations in arable roadside soils in terms of different traffic conditions. Environmental Monitoring and Assessment, 192, pp.1-12.
https://doi.org/10.1007/s10661-020-8120-x
PMid:32006114 PMCid:PMC6994438
 
30.Wati, C.C., Prijono, S. and Kusuma, Z., 2015. The effect of motor vehicle emission towards lead (Pb) content of rice field soil with different clay content. Journal of Degraded and Mining Lands Management, 3(1), pp.453-458.
 
31. Enayatzamir, K., Amini, M., Savaghebi, Gh. and Abbaspour, K.C. 2008. Quantifying the effect of traffic on lead accumulation in soil: a case study in Iran. Caspian J. Env32. Davies, B.E. and Holmes, P.L., 1972. Lead contamination of roadside soil and grass in Birmingham, England, in relation to naturally occurring levels. The Journal of Agricultural Science, 79(3), pp.479-484.
https://doi.org/10.1017/S0021859600025843
 
33. Hafen, M.R. and Brinkmann, R., 1996. Analysis of lead in soils adjacent to an interstate highway in Tampa, Florida. Environmental Geochemistry and Health, 18, pp.171-179.
https://doi.org/10.1007/BF01771240
PMid:24194412
 
. Sci., 6 (1): 11-17.
 
34. Turer, D.G. and Maynard, B.J., 2003. Heavy metal contamination in highway soils. Comparison of Corpus Christi, Texas and Cincinnati, Ohio shows organic matter is key to mobility. Clean Technologies and Environmental Policy, 4(4), pp.235-245.
https://doi.org/10.1007/s10098-002-0159-6
 
35. Wheeler, G.L. and Rolfe, G.L., 1979. The relationship between daily traffic volume and the distribution of lead in roadside soil and vegetation. Environmental Pollution (1970), 18(4), pp.265-274.
https://doi.org/10.1016/0013-9327(79)90022-3
 
36. Al-Chalabi, A. and Hawker, D. 2000. Distribution of vehicular lead in roadside soils of major roads of Brisbane, Australia. Water, Air, and Soil Pollut. 118, 299-310.
https://doi.org/10.1023/A:1005107808235
 
37. Sutherland, R.A., Tolosa, C.A., Tack, F.M.G. & Verloo, M.G. 2000. Characterization of selected element concentrations and enrichment ratios in background and anthropogenically impacted roadside areas. Arch. Environ. Con. Tox. 38, 428-438.
https://doi.org/10.1007/s002440010057
PMid:10787093
 
38. Morel, J.L., Mench, M. and Guckert, A., 1986. Measurement of Pb 2+, Cu 2+ and Cd 2+ binding with mucilage exudates from maize (Zea mays L.) roots. Biology and Fertility of Soils 2, 29-34.
https://doi.org/10.1007/BF00638958
 
39. Wierzbicka, M., 1987. Lead translocation and localization in Allium cepa roots. Canadian Journal of Botany 65(9), 1851-1860.
https://doi.org/10.1139/b87-254
 
40. Tu, S.I. and Brouillette, J.N., 1986. Metal ion inhibition of corn root plasma membrane ATPase. Phytochemistry 26(1), 65-69.
https://doi.org/10.1016/S0031-9422(00)81482-X
 
41. Miles, C.D., Brandle, J.R., Daniel, D.J., Chu-Der, O., Schnare, P.D. and Uhlik, D.J., 1972. Inhibition of photosystem II in isolated chloroplasts by lead. Plant physiology 49(5), 820-825.
https://doi.org/10.1104/pp.49.5.820
PMid:16658055 PMCid:PMC366059
 
42. Zakari, A. and Audu, A.A., 2021. Evaluation of potentially toxic metals (PTMs) accumulation and translocation by Albizia lebbeck from industrial soil. Science World Journal, 16(2), pp.157-161.
 
43. Zakari, A. and Audu, A.A., 2021. Evaluation of potentially toxic metals (PTMs) accumulation and translocation by Albizia lebbeck from industrial soil. Science World Journal, 16(2), pp.157-161.
 
44. Manikandan, M., Kannan, V., Mendoza, O.H., Kanimozhi, M., Chun, S. and Pašić, L., 2016. The contribution of endophytic bacteria to Albizia lebbeck-mediated phytoremediation of tannery effluent contaminated soil. International journal of phytoremediation, 18(1), pp.77-86.
https://doi.org/10.1080/15226514.2015.1064351
PMid:26147743
 
45. Arriagada, C.A., Herrera, M.A. and Ocampo, J.A., 2007. Beneficial effect of saprobe and arbuscular mycorrhizal fungi on growth of Eucalyptus globulus co-cultured with Glycine max in soil contaminated with heavy metals. Journal of Environmental Management 84(1), 93-99.
https://doi.org/10.1016/j.jenvman.2006.05.005
PMid:16837125
 
46. King, D.J., Doronila, A.I., Feenstra, C., Baker, A.J. and Woodrow, I.E., 2008. Phytostabilisation of arsenical gold mine tailings using four Eucalyptus species: growth, arsenic uptake and availability after five years. Science of the total environment 406(1-2), 35-42.
https://doi.org/10.1016/j.scitotenv.2008.07.054
PMid:18801558
 
47. Fine, P., Rathod, P.H., Beriozkin, A. and Mingelgrin, U., 2013. Uptake of cadmium by hydroponically grown, mature Eucalyptus camaldulensis saplings and the effect of organic ligands. International journal of phytoremediation 15(6), 585-601.
https://doi.org/10.1080/15226514.2012.723061
PMid:23819299
 
48. Mok, H.F., Majumder, R., Laidlaw, W.S., Gregory, D., Baker, A.J. and Arndt, S.K., 2013. Native Australian species are effective in extracting multiple heavy metals from biosolids. International journal of phytoremediation 15(7), 615-632.
https://doi.org/10.1080/15226514.2012.723063
PMid:23819263
 
49. Kabata-Pendias, A. and Pendias, H. 2000. Trace Elements in Soils and Plants. Boea Raton, Florida. CRC Press.
https://doi.org/10.1201/9781420039900
 
50. Farooqi, Z.R., Iqbal, M.Z., Kabir, M. and Shafiq, M., 2009. Toxic effects of lead and cadmium on germination and seedling growth of Albizia lebbeck (L.) Benth. Pak. J. Bot, 41(1), pp.27-33.
 
51. Zia-Ur-Rehman Farooqi, M.Z., Iqbal, M.K. and Muhammad, S.H.A.F.I.Q., 2011. Tolerance of Albizia lebbeck (l) benth to different levels of lead in natural field conditions. Pak. J. Bot, 43(1), pp.445-452.
 
52. Nurnabi M, Bhowmik S, RAHMAN MS, Choudhury TR, Parsons AJ, Young SD. Modification and Application of Albizia lebbeck Sawdust For The Sorption of Lead (II) and Copper (II) From Aqueous Solutions. Oriental Journal of Chemistry. 2020 Aug 1;36(4).
https://doi.org/10.13005/ojc/360401