1. Hussain, B., Ashraf, M.N., Abbas, A., Li, J. and Farooq, M., 2021. Cadmium stress in paddy fields: effects of soil conditions and remediation strategies. Science of the Total Environment, 754, p.142188.
https://doi.org/10.1016/j.scitotenv.2020.142188PMid:33254942
|
2. Yasir, M.W., Siddique, M.B.A., Shabbir, Z., Ullah, H., Riaz, L. and Shah, A.A., 2021. Biotreatment potential of co-contaminants hexavalent chromium and polychlorinated biphenyls in industrial wastewater: Individual and simultaneous prospects. Science of the Total Environment, 779, p.146345. https://doi.org/10.1016/j.scitotenv.2021.146345PMid:33752007
|
|
3. Xuebin, Q., Tariq, A., Zhao, Z., Ashraf, M.N., Jiaxin, C. and Mehmood, F., 2020. Silicon attenuates acidic and alkaline stress in wheat plant by improving nutrient availability, membrane stability index and antioxidant defense system. International Journal of Agriculture and Biology, 24(3), pp.553-562.
|
|
4. Antoniadis, V., Shaheen, S.M., Stark, H.J., Wennrich, R., Levizou, E., Merbach, I. and Rinklebe, J., 2021. Phytoremediation potential of twelve wild plant species for toxic elements in a contaminated soil. Environment International, 146, p.106233. https://doi.org/10.1016/j.envint.2020.106233PMid:33189990
|
|
5. Yasin, G., Ur Rahman, S., Yousaf, M.T.B., Azhar, M.F., Zahid, D.M., Imtiaz, M. and Hussain, B., 2021. Phytoremediation potential of E. camaldulensis and M. alba for copper, cadmium, and lead absorption in urban areas of Faisalabad City, Pakistan. International Journal of Environmental Research, 15, pp.597-612. https://doi.org/10.1007/s41742-021-00330-4
|
|
6. Yang, W., Zhao, F., Wang, Y., Ding, Z., Yang, X. and Zhu, Z., 2020. Differences in uptake and accumulation of copper and zinc by Salix clones under flooded versus non-flooded conditions. Chemosphere, 241, p.125059. https://doi.org/10.1016/j.chemosphere.2019.125059PMid:31606571
|
|
7. Sadat Hosseini, N. and Sobhan Ardakani, S. 2023. Assessment of level and source identification of heavy metals in the surface soil of the roadside: A case study. Journal of Research in Environmental Health, 9 (2): 197-214. [In Persian].
|
|
8. Opoku, P., Gikunoo, E., Arthur, E.K. and Foli, G., 2020. Removal of selected heavy metals and metalloids from an artisanal gold mining site in Ghana using indigenous plant species. Cogent Environmental Science, 6(1), p.1840863. https://doi.org/10.1080/23311843.2020.1840863
|
|
9. Fazel Valipour, M.E. 2021. Investigation of soil heavy metals concentrations (As, Cd, Co, Cr and Ni) in region Dehnov Shandiz. Journal of Research in Environmental Health, 7 (3): 216-225. [In Persian].
|
|
10. Li, C., Zhou, K., Qin, W., Tian, C., Qi, M., Yan, X. and Han, W., 2019. A review on heavy metals contamination in soil: effects, sources, and remediation techniques. Soil and Sediment Contamination: An International Journal, 28(4), pp.380-394. https://doi.org/10.1080/15320383.2019.1592108
|
|
11. Salmani-Ghabeshi, S., Fadic-Ruiz, X., Miro-Rodriguez, C., Pinilla-Gil, E. and Cereceda-Balic, F., 2021. Trace element levels in native plant species around the industrial site of Puchuncaví-Ventanas (Central Chile): Evaluation of the phytoremediation potential. Applied Sciences, 11(2), p.713. https://doi.org/10.3390/app11020713
|
|
12. Mitra, A., Chatterjee, S., Voronina, A.V., Walther, C. and Gupta, D.K., 2020. Lead toxicity in plants: a review. Lead in Plants and the Environment, pp.99-116. https://doi.org/10.1007/978-3-030-21638-2_6
|
|
|
|
14. Sabir, M.A., Guo, W., Nawaz, M.F., Yasin, G., Yousaf, M.T.B., Gul, S., Hussain, T. and Rahman, S.U., 2023. Assessing the effects of limestone dust and lead pollution on the ecophysiology of some selected urban tree species. Frontiers in Plant Science, 14, p.1144145. https://doi.org/10.3389/fpls.2023.1144145PMid:37255552 PMCid:PMC10225577
|
|
15. Abbaszadeh, H., Mohammadi Roozbahani, M. and Sobhanardakani, S., 2019. Use of Ziziphus spina-christi and Prosopis cineraria leaves as bio-indicators of environmental pollution emitted from industrial areas. Iranian Journal of Health and Environment 12 (1), 87-100. [In Persian].
|
|
16. Kolah Kaj, A. and Mohammadi Rozbahani, M., 2017. Survey Effectiveness of Althea officinal in Pb Heavy Metal Accumulation. Journal of Environmental Science and Technology 19 (1), 93-102.[In Persian].
|
|
17. El-Khatib, A.A., Youssef, N.A., Barakat, N.A. and Samir, N.A., 2020. Responses of Eucalyptus globulus and Ficus nitida to different potential of heavy metal air pollution. International Journal of Phytoremediation, 22(10), pp.986-999. https://doi.org/10.1080/15226514.2020.1719031PMid:32037853
|
|
18. Alsihany, M.M., Ghoneim, A.M. and Bukhari, N.A., 2019. Transfer and accumulation of some heavy metals in native vegetation plants. International Journal of Plant & Soil Science 28(4), 1-10. https://doi.org/10.9734/ijpss/2019/v28i430113
|
|
19. Nangbes, J.G., Choji, V.C., Terver, J.S. and Daring, K.E., 2018. Distribution of Heavy Metals Using Eucalyptus Spp as Bioindicator in Farmlands of Jos South LGA, Plateau State, Nigeria.International Journal of Trend in Research and Development,5 (1): 60-63.
|
|
20. Torkashvand, V., Mohammadi Rouzbahni, M. and Babaeinezhad, T. 2018. Survey of heavy metals (Pb,Ni,Cr,Cd ) bio-accumulation in the leaves of (Albizia lebbek and Eucalyotus camadulensis) (case stady: Iran National Steel Industrial Group). Journal of Neyshabur University of Medical Sciences 6 (1), 33-43. [In Persian].
|
|
21. Rafati, M., Mohammadi Rozbahani, M. And Naseri Monfared, H. 2021. Accumulation of heavy metals (lead and nickel) by the soil and leaves of Albizia lebbeck and Conocarpus erectus from the city of Ahwaz. Journal of Forest and Wood Products 73 (4), 379-387. [In Persian].
|
|
22. Moein, F., Kalantari, K., Asadi, A. & Kurd Alivand, S. 2021. Factors affecting wheat waste from the perspective of villagers in Shush. Space Economy& Rural Development 10 (36), 99-118.
|
|
23.Bahemuka, T. E. & Mubofu, E. B. 1999. Heavy metals in edible green vegetables grown along the sites of the Sinza and Msimbazi rivers in Dar es Salaam, Tanzania. Food Chemistry 66(1), 63-66. https://doi.org/10.1016/S0308-8146(98)00213-1
|
|
24. Johnson, C.M. & Ulrich, A. 1959. Analytical Methods for Use in Plant Analysis. Bulletin 766. University of California Agricultural Experiment Station, Berkeley, C A.
|
|
25. Kimbrough, D.E. & Wakakuwa, J.R. 1989. Acid digestion for sediments, sludges, soils, and solid wastes. A proposed alternative to EPA SW 846 Method 3050. Environmental science & technology23 (7), 898-900. https://doi.org/10.1021/es00065a021
|
|
26. Mohammadi, M., Hedayati, A.A., Forouhar Vajargah, M., Pirali, A.R. and Fallah, M. 2021. Zonation of heavy metal distribution of surface sediments in Anzali wetland Using Geographical Information System (GIS). Journal of Research in Environmental Health, 7 (4): 323-331. [In Persian].
|
|
27. Yakupoglu, D., Guray, T., Sarica, D.Y. and Kaya, Z., 2008. Determination of airborne lead contamination in Cichorium intybus L. in an urban environment. Turkish Journal of Botany, 32(4), pp.319-324.
|
|
28. Aslam, J., Khan, S.A. and Khan, S.H., 2013. Heavy metals contamination in roadside soil near different traffic signals in Dubai, United Arab Emirates. J Saudi Chem Soc., 17: 315-319. https://doi.org/10.1016/j.jscs.2011.04.015
|
|
29.Szwalec, A., Mundała, P., Kędzior, R. and Pawlik, J., 2020. Monitoring and assessment of cadmium, lead, zinc and copper concentrations in arable roadside soils in terms of different traffic conditions. Environmental Monitoring and Assessment, 192, pp.1-12. https://doi.org/10.1007/s10661-020-8120-xPMid:32006114 PMCid:PMC6994438
|
|
30.Wati, C.C., Prijono, S. and Kusuma, Z., 2015. The effect of motor vehicle emission towards lead (Pb) content of rice field soil with different clay content. Journal of Degraded and Mining Lands Management, 3(1), pp.453-458.
|
|
31. Enayatzamir, K., Amini, M., Savaghebi, Gh. and Abbaspour, K.C. 2008. Quantifying the effect of traffic on lead accumulation in soil: a case study in Iran. Caspian J. Env32. Davies, B.E. and Holmes, P.L., 1972. Lead contamination of roadside soil and grass in Birmingham, England, in relation to naturally occurring levels. The Journal of Agricultural Science, 79(3), pp.479-484. https://doi.org/10.1017/S0021859600025843
|
|
33. Hafen, M.R. and Brinkmann, R., 1996. Analysis of lead in soils adjacent to an interstate highway in Tampa, Florida. Environmental Geochemistry and Health, 18, pp.171-179. https://doi.org/10.1007/BF01771240PMid:24194412
|
|
. Sci., 6 (1): 11-17.
|
|
34. Turer, D.G. and Maynard, B.J., 2003. Heavy metal contamination in highway soils. Comparison of Corpus Christi, Texas and Cincinnati, Ohio shows organic matter is key to mobility. Clean Technologies and Environmental Policy, 4(4), pp.235-245. https://doi.org/10.1007/s10098-002-0159-6
|
|
35. Wheeler, G.L. and Rolfe, G.L., 1979. The relationship between daily traffic volume and the distribution of lead in roadside soil and vegetation. Environmental Pollution (1970), 18(4), pp.265-274. https://doi.org/10.1016/0013-9327(79)90022-3
|
|
36. Al-Chalabi, A. and Hawker, D. 2000. Distribution of vehicular lead in roadside soils of major roads of Brisbane, Australia. Water, Air, and Soil Pollut. 118, 299-310. https://doi.org/10.1023/A:1005107808235
|
|
37. Sutherland, R.A., Tolosa, C.A., Tack, F.M.G. & Verloo, M.G. 2000. Characterization of selected element concentrations and enrichment ratios in background and anthropogenically impacted roadside areas. Arch. Environ. Con. Tox. 38, 428-438. https://doi.org/10.1007/s002440010057PMid:10787093
|
|
38. Morel, J.L., Mench, M. and Guckert, A., 1986. Measurement of Pb 2+, Cu 2+ and Cd 2+ binding with mucilage exudates from maize (Zea mays L.) roots. Biology and Fertility of Soils 2, 29-34. https://doi.org/10.1007/BF00638958
|
|
39. Wierzbicka, M., 1987. Lead translocation and localization in Allium cepa roots. Canadian Journal of Botany 65(9), 1851-1860. https://doi.org/10.1139/b87-254
|
|
|
|
41. Miles, C.D., Brandle, J.R., Daniel, D.J., Chu-Der, O., Schnare, P.D. and Uhlik, D.J., 1972. Inhibition of photosystem II in isolated chloroplasts by lead. Plant physiology 49(5), 820-825. https://doi.org/10.1104/pp.49.5.820PMid:16658055 PMCid:PMC366059
|
|
42. Zakari, A. and Audu, A.A., 2021. Evaluation of potentially toxic metals (PTMs) accumulation and translocation by Albizia lebbeck from industrial soil. Science World Journal, 16(2), pp.157-161.
|
|
43. Zakari, A. and Audu, A.A., 2021. Evaluation of potentially toxic metals (PTMs) accumulation and translocation by Albizia lebbeck from industrial soil. Science World Journal, 16(2), pp.157-161.
|
|
44. Manikandan, M., Kannan, V., Mendoza, O.H., Kanimozhi, M., Chun, S. and Pašić, L., 2016. The contribution of endophytic bacteria to Albizia lebbeck-mediated phytoremediation of tannery effluent contaminated soil. International journal of phytoremediation, 18(1), pp.77-86. https://doi.org/10.1080/15226514.2015.1064351PMid:26147743
|
|
45. Arriagada, C.A., Herrera, M.A. and Ocampo, J.A., 2007. Beneficial effect of saprobe and arbuscular mycorrhizal fungi on growth of Eucalyptus globulus co-cultured with Glycine max in soil contaminated with heavy metals. Journal of Environmental Management 84(1), 93-99. https://doi.org/10.1016/j.jenvman.2006.05.005PMid:16837125
|
|
46. King, D.J., Doronila, A.I., Feenstra, C., Baker, A.J. and Woodrow, I.E., 2008. Phytostabilisation of arsenical gold mine tailings using four Eucalyptus species: growth, arsenic uptake and availability after five years. Science of the total environment 406(1-2), 35-42. https://doi.org/10.1016/j.scitotenv.2008.07.054PMid:18801558
|
|
47. Fine, P., Rathod, P.H., Beriozkin, A. and Mingelgrin, U., 2013. Uptake of cadmium by hydroponically grown, mature Eucalyptus camaldulensis saplings and the effect of organic ligands. International journal of phytoremediation 15(6), 585-601. https://doi.org/10.1080/15226514.2012.723061PMid:23819299
|
|
48. Mok, H.F., Majumder, R., Laidlaw, W.S., Gregory, D., Baker, A.J. and Arndt, S.K., 2013. Native Australian species are effective in extracting multiple heavy metals from biosolids. International journal of phytoremediation 15(7), 615-632. https://doi.org/10.1080/15226514.2012.723063PMid:23819263
|
|
|
|
50. Farooqi, Z.R., Iqbal, M.Z., Kabir, M. and Shafiq, M., 2009. Toxic effects of lead and cadmium on germination and seedling growth of Albizia lebbeck (L.) Benth. Pak. J. Bot, 41(1), pp.27-33.
|
|
51. Zia-Ur-Rehman Farooqi, M.Z., Iqbal, M.K. and Muhammad, S.H.A.F.I.Q., 2011. Tolerance of Albizia lebbeck (l) benth to different levels of lead in natural field conditions. Pak. J. Bot, 43(1), pp.445-452.
|
|
52. Nurnabi M, Bhowmik S, RAHMAN MS, Choudhury TR, Parsons AJ, Young SD. Modification and Application of Albizia lebbeck Sawdust For The Sorption of Lead (II) and Copper (II) From Aqueous Solutions. Oriental Journal of Chemistry. 2020 Aug 1;36(4). https://doi.org/10.13005/ojc/360401
|