تعهد نامه

نوع مقاله : Research Paper

نویسندگان

1 استادیار گروه مهندسی شیمی، دانشکده مهندسی، دانشگاه صنعتی کرمانشاه، ایران.

2 دانشیار گروه محیط زیست، دانشکده منابع طبیعی، دانشگاه زابل، ایران.

چکیده

زمینه و هدف: گیاه‌پالایی از روش‌های کارآمد در تثبیت، استخراج، محبوس کردن و یا سمیت‌زدایی از آلاینده‌ها با استفاده از گیاهان بشمار می‌رود. این روش ارزان قیمت و دوستدار محیط زیست، موجب احیاء، توسعه پوشش گیاهی و همچنین افزایش فعالیت و رشد میکروارگانیزم‌ها می‌شود. در این مطالعه گونه‌های رشدیافته در خاک‌روبه‌های معادن سرب و روی راونج شناسایی و ارزیابی شد. 

مواد و روش‌ها: گیاهان بومی رشد کرده در خاک‌روبه‌های معدنی، از قسمت ریشه جدا شدند. نمونه‌برداری به صورت تصادفی از خاک و گونه‌های گیاهی شناسایی‌شده انجام شد. میزان تجمع فلزات سنگین (سرب، روی، منگنز، کروم، مس، نیکل، کادمیوم و کبالت) در خاک، اندام‌های هوایی و ریشه گیاهان مورد سنجش قرار گرفت. همچنین شاخص‌های تغلیظ زیستی بخش هوایی و ریشه‌ای و عامل انتقال محاسبه گردید.

یافته‌ها: فلزات سنگین کادمیوم، روی، سرب و منگنز به ترتیب بیشترین تجمع را در برگ گیاهان Euphorbia macroclada (3/0±91/17 میلی‌گرم بر کیلوگرم)، Verbascum speciosum (751/42±94/67 میلی‌گرم بر کیلوگرم)، Acanthophyllum microcephalum (272/31±11/73 میلی‌گرم بر کیلوگرم) و Acanthophyllum microcephalum (594/9±59/76 میلی‌گرم بر کیلوگرم) دارا بودند. همچنین فلزات کبالت، کروم، مس و نیکل به ترتیب بیشترین تجمع را در ریشه گیاهان Acantholimon hohenackeri (3/0±17/55 میلی‌گرم بر کیلوگرم)، Acantholimon hohenakeri (20/2±16/28 میلی‌گرم بر کیلوگرم)، Euphorbia macroclada (19/0±51/36 میلی‌گرم بر کیلوگرم) و Verbascum speciosum (17/0±56/90 میلی‌گرم بر کیلوگرم) نشان دادند. گیاه Euphorbia macroclada بیشترین میزان تغلیظ زیستی در اندام هوایی و ریشهای مربوط به فلز کادمیوم (0/40) را از خود نشان داد. همچنین بیشترین میزان عامل انتقال (2/75) مربوط به فلز سرب و توسط گیاه Acantholimon hohenackeri انجام شد.

نتیجه‌گیری: با توجه به نتایج پژوهش حاضر، گونه‌های مورد بررسی در معدن سرب و روی راونج می‌تواند به عنوان گیاهان مقاوم به فلزات سنگین به منظور کاهش تحرک و فراهمیِ زیستی فلزات سنگین و در نتیجه بهبود کیفیت بافت خاک استفاده نمود.

کلیدواژه‌ها

عنوان مقاله [English]

Bioaccumulation efficiency comparison of heavy metals in Verbascum speciosum, Acantholimon hohenackeri, Acanthophyllum microcephalum, and Euphorbia macroclada, grown around lead and zinc mines

نویسندگان [English]

  • Mohsen Samimi 1
  • Mohsen Shahriari Moghadam 2

1 Department of Chemical Engineering, Faculty of Engineering, Kermanshah University of Technology, Kermanshah, Iran.

2 Department of Environmental Sciences, Faculty of Natural Resources, University of Zabol, Zabol, Iran.

چکیده [English]

Background and Purpose: Phytoremediation stands out as one of the effective techniques for stabilizing, extracting, trapping, or detoxifying pollutants utilizing plants. This cost-effective and environmentally friendly approach leads to the revitalization and enhancement of vegetation, along with increased activity and growth of microorganisms. In this study, the species cultivated in the tailings of the lead and zinc mines of Ravanj were identified and assessed.

Materials and Methods: Indigenous plants thriving in mineral tailings were isolated from the root portion. Random sampling of the identified soil and plant species was conducted. The accumulation of heavy metals (lead, zinc, manganese, chromium, copper, nickel, cadmium, and cobalt) in the soil, aerial organs, and roots of plants were quantified. Additionally, the bioconcentration factor of the aerial and root parts and the transfer factor were computed.

Results: Among the heavy metals, cadmium, zinc, lead, and manganese displayed the highest accumulations in the leaves of Euphorbia macroclada (3.91±0.17 mg/kg), Verbascum speciosum (751.94±42.67 mg/kg), Acanthophyllum microcephalum (272.11±31.73 mg/kg), and Acanthophyllum microcephalum (594.59±9.76 mg/kg), respectively. Conversely, cobalt, chromium, copper, and nickel exhibited the most significant accumulations in the roots of Acantholimon hohenackeri (3.17±0.55 mg/kg), Acantholimon hohenakeri (20.16±2.28 mg/kg), Euphorbia macroclada (19.51±0.36 mg/kg), and Verbascum speciosum (17.56±0.90 mg/kg), respectively. Euphorbia macroclada demonstrated the highest bioconcentration in aerial parts and roots concerning cadmium metal (0.40). Furthermore, the Acantholimon hohenackeri plant exhibited the highest transfer factor (2.75), primarily associated with lead metal.

Conclusion: Based on the findings of this study, the investigated species within the lead and zinc mines of Ravanj could serve as heavy metal-resistant ecotypes, contributing to the reduction of heavy metal mobility and bioavailability, thereby enhancing soil texture quality.
 

کلیدواژه‌ها [English]

  • bioconcentration
  • tailing
  • polluted soils
  • bioavailability
  • Ravanj mine
1. Samimi M, Mansouri E. Efficiency evaluation of Falcaria vulgaris biomass in Co(II) uptake from aquatic environments: characteristics, kinetics and optimization of operational variables. International Journal of Phytoremediation. 2024; 26(4).
https://doi.org/10.1080/15226514.2023.2250462
PMid:37622683
 
2. Azimi N, Azimi P, Samimi M, Mansouri Jalilian T. Ultrasonic-assisted adsorption of Ni(II) ions from aqueous solution onto Fe3O4 nanoparticles. Advances in Nanochemistry. 2019;1(2):66-72.
 
3. Igwe O, Adepehin EJ, Iwuanyanwu C, Una CO. Risks associated with the mining of Pb-Zn minerals in some parts of the Southern Benue trough, Nigeria. Environmental monitoring and assessment. 2014;186:3755-3765.
https://doi.org/10.1007/s10661-014-3655-3
PMid:24577621
 
4. Samimi M. Efficient biosorption of cadmium by Eucalyptus globulus fruit biomass using process parameters optimization. Global Journal of Environmental Science and Management. 2024;10(1):27-38.
 
5. Samimi M, Shahriari-Moghadam M. Isolation and identification of Delftia lacustris Strain-MS3 as a novel and efficient adsorbent for lead biosorption: Kinetics and thermodynamic studies, optimization of operating variables. Biochemical Engineering Journal; 2021;173:108091.
https://doi.org/10.1016/j.bej.2021.108091
 
6. Lu T, Chen WQ, Ma Y, Qian Q, Jia J. Environmental impacts and improvement potentials for copper mining and mineral processing operations in China. Journal of Environmental Management. 2023; 342:118178.
https://doi.org/10.1016/j.jenvman.2023.118178
PMid:37196612
 
7. Benson A, Akinterinwa A, Milam C, Hammed AM. Chemical profiling of minerals and elemental composition of rock and soil samples from Bakin Dutse Hills, Madagali, Adamawa State Nigeria. Eurasian Journal of Science and Technology. 2023; 3(4):238-251.
 
8. Shu XH, Zhang Q, Lu GN, Yi XY, Dang Z. Pollution characteristics and assessment of sulfide tailings from the Dabaoshan Mine, China. International biodeterioration and biodegradation. 2018;128:122-128.
https://doi.org/10.1016/j.ibiod.2017.01.012
 
9. Wang C, Jing J, Qi Y, Zhou Y, Zhang K, Zheng,Y, Zhai Y, Liu F. Basic characteristics and environmental impact of iron ore tailings. Frontiers in Earth Science. 2023;11:1181984.
https://doi.org/10.3389/feart.2023.1181984
 
10. Helser J, and V. Cappuyns, Trace elements leaching from pbzn mine waste (plombières, belgium) and environmental implications. Journal of Geochemical Exploration. 2021; 220:106659.
https://doi.org/10.1016/j.gexplo.2020.106659
 
11. Freitas H, M Prasad, J Pratas. Analysis of serpentinophytes from north-east of Portugal for trace metal accumulation--relevance to the management of mine environment. Chemosphere. 2004;54(11):1625-1642.
https://doi.org/10.1016/j.chemosphere.2003.09.045
PMid:14675842
 
12. Cacciuttolo C, Cano D. Environmental impact assessment of mine tailings spill considering metallurgical processes of gold and copper mining: case studies in the Andean countries of Chile and Peru. Water. 2022;14(19): 3057.
https://doi.org/10.3390/w14193057
 
13. Samimi M, Shahriari-Moghadam M. The Lantana camara L. stem biomass as an inexpensive and efficient biosorbent for the adsorptive removal of malachite green from aquatic environments: kinetics, equilibrium and thermodynamic studies. International Journal of Phytoremediation. 2023; 25(10):1328-1336.
https://doi.org/10.1080/15226514.2022.2156978
PMid:37154395
 
14. Moghadam H, Samimi, M. Effect of condenser geometrical feature on evacuated tube collector basin solar still performance: productivity optimization using a Box-Behnken design model. Desalination. 2022;542:116092.
https://doi.org/10.1016/j.desal.2022.116092
 
15. Samimi M, Zakeri M, Alobaid F, Aghel B. A Brief Review of Recent Results in Arsenic Adsorption Process from Aquatic Environments by Metal-Organic Frameworks: Classification Based on Kinetics, Isotherms and Thermodynamics Behaviors. Nanomaterials. 2023;13(1):60.
https://doi.org/10.3390/nano13010060
PMid:36615970 PMCid:PMC9823661
 
16. Samimi, M, Shahriari-Moghadam M. Optimal conditions for the biological removal of ammonia from wastewater of a petrochemical plant using the response surface methodology. Global Journal of Environmental Science and Management. 2018;4(3):315-324.
 
17. Thakuria A, Singh KK, Dutta A, Corton E, Stom D, Barbora L, Goswami, P. Phytoremediation of toxic chemicals in aquatic environment with special emphasis on duckweed mediated approaches. International Journal of Phytoremediation. 2023;25(13):1699-1713.
https://doi.org/10.1080/15226514.2023.2188423
PMid:36941761
 
18. Yan A, Wang Y, Tan SN, Mohd Yusof ML, Ghosh S, Chen Z. Phytoremediation: a promising approach for revegetation of heavy metal-polluted land. Frontiers in Plant Science. 2020;11:359.
https://doi.org/10.3389/fpls.2020.00359
PMid:32425957 PMCid:PMC7203417
 
19. Azizi M, Faz A, Zornoza R, Martinez-Martinez S, Acosta JA. Phytoremediation Potential of Native Plant Species in Mine Soils Polluted by Metal (loid) s and Rare Earth Elements. Plants. 2023;12(6):1219.
https://doi.org/10.3390/plants12061219
PMid:36986908 PMCid:PMC10058974
 
20. Lorestani B, Cheraghi M, Yousefi N. Phytoremediation potential of native plants growing on a heavy metals contaminated soil of copper mine in Iran. International Journal of Geological and Environmental Engineering. 2011;5(5):299-304.
 
21. Hasnaoui SE, Fahr M, Keller C, Levard C, Angeletti B, Chaurand P, Triqui ZEA, Guedira A, Rhazi L, Colin F, Smouni, A. Screening of native plants growing on a Pb/Zn mining area in eastern Morocco: Perspectives for phytoremediation. Plants. 2020;9(11):1458.
https://doi.org/10.3390/plants9111458
PMid:33137928 PMCid:PMC7693513
 
22. Hosseinniaee S, Jafari M, Tavili A, Zare S, Cappai G. De Giudici G. Perspectives for phytoremediation capability of native plants growing on Angouran Pb-Zn mining complex in northwest of Iran. Journal of Environmental Management. 2022;315:115184.
https://doi.org/10.1016/j.jenvman.2022.115184
PMid:35523070
 
23. Munishi LK, Ndakidemi PA, Blake W, Comber S, Hutchinson TH. Accumulation and bioconcentration of heavy metals in two phases from agricultural soil to plants in Usangu agroecosystem-Tanzania. Heliyon. 2021;7(7): e07514.
https://doi.org/10.1016/j.heliyon.2021.e07514
PMid:34296014 PMCid:PMC8282977
 
24. Naz R, Khan MS, Hafeez A, Fazil M, Khan MN, Ali B, Javed MA, Imran M, Shati AA, Alfaifi MY, Elbehairi SEI, Ahmed AE. Assessment of phytoremediation potential of native plant species naturally growing in a heavy metal-polluted industrial soils. Brazilian Journal of Biology. 2022;26:84:e264473.
https://doi.org/10.1590/1519-6984.264473
PMid:36169410
 
25. Samimi M, Mohammadzadeh E, Mohammadzadeh A. Rate enhancement of plant growth using Ormus solution: optimization of operating factors by response surface methodology. International Journal of Phytoremediation, 2023; 25(12):1636-1642.
https://doi.org/10.1080/15226514.2023.2179014
PMid:36850037
 
26. Safari M, Shahriari Moghadam M, Samimi M, Azizi Z. Study of the Optimal Conditions for (Zn+2) Removal Using the Biomass of Isolated Bacteria from Ravang Mine. Iranian Journal of Soil and Water Research, 2019;50(1): 149-160.(Persian)
 
27. Kafle A, Timilsina A, Gautam, A, Adhikari K, Bhattarai A, Aryal N. Phytoremediation: Mechanisms, plant selection and enhancement by natural and synthetic agents. Environmental Advances. 2022;8:100203.
https://doi.org/10.1016/j.envadv.2022.100203
 
28. Onjefu SA, Shaningwa F, Lusilao J, Abah J, Hess E, Kwaambwa HM. Assessment of heavy metals pollution in sediment at the Omaruru River basin in Erongo region, Namibia. Environmental Pollutants and Bioavailability. 2020;32(1):187-193.
https://doi.org/10.1080/26395940.2020.1842251
 
29. Motamedi J, Ahmadzadeh N, Alijanpoor A, Shydai karkaj E. Ecological and morphological characteristics of Verbascum speciosum Schrader. in the mountainous rangelands of Sahand. Journal of Rangeland. 2019;13(1):76-89.(Persian).
 
30. Vahid Karimian V, Wahhabi M, Rostakhiz J, Nodehi N. Investigation of habitat characteristics of Verbascum songaricum schrenk in rangeland ecosystems of zagros. Plant Ecosystem Conservation. 2016;4(8):88-102.(Persian).
 
31. Montazeri F, Reza Tamartash R, Tatian MR, Hojati M. Potential of rangeland species Astragalus globiflorus and Acantholimon hohenackeri in heavy metals absorption (Case study: rangelands around the Firoozkouh cement factory). 2018;25(2):278-288.(Persian).
 
32. Safaei MH, Bashari, and H.A. Shirmardi. Evaluating the Effects of Study Scale on Spatial Patterns of three Range Plant Species Using Quadrate Indices and Point Pattern Analysis in Chaharmahal- Bakhtirai Province Rangelands. Iranian Journal of Applied Ecology. 2016;5(17):37-49.(persian).
https://doi.org/10.18869/acadpub.ijae.5.17.37
 
33. Pahlevani A. Study of the genus Euphorbia and importance of its species in Iran with emphasis on biodiversity and their conservation status. Rostaniha.2022;1(64):59-78.(Persian)
 
34. Xiao WL, Luo CL, Chen YH, Shen ZG, Li XD. Bioaccumulation of heavy metals by wild plants growing on copper mine spoils in China. Communications in soil science and plant analysis. 2008;39(3-4):315-328.
https://doi.org/10.1080/00103620701826415
 
35. Gavrilescu M. Enhancing phytoremediation of soils polluted with heavy metals. Current Opinion in biotechnology.2022;74:21-31.
https://doi.org/10.1016/j.copbio.2021.10.024
PMid:34781102
 
36. Castaňares E, Lojka B. Potential hyperaccumulator plants for sustainable environment in tropical habitats. in IOP Conference Series: Earth and Environmental Science. 2020. IOP Publishing.
https://doi.org/10.1088/1755-1315/528/1/012045
 
37. Singh G, M Bhati, Growth of Dalbergia sissoo in desert regions of western India using municipal effluent and the subsequent changes in soil and plant chemistry. Bioresource Technology. 2005;96(9):1019-1028.
https://doi.org/10.1016/j.biortech.2004.09.011
PMid:15668198
 
38. Xu W, Xiang P, Liu X, Ma LQ. Closely-related species of hyperaccumulating plants and their ability in accumulation of As, Cd, Cu, Mn, Ni, Pb and Zn. Chemosphere. 2020;251:126334.
https://doi.org/10.1016/j.chemosphere.2020.126334
PMid:32169705
 
39.Reeves RD, Baker AJ, Jaffré T, Erskine PD, Echevarria G, van Der Ent A. A global database for plants that hyperaccumulate metal and metalloid trace elements. New Phytologist. 2018;218(2):407-411.
https://doi.org/10.1111/nph.14907
PMid:29139134