تعهد نامه

نوع مقاله : مقالات پژوهشی

نویسندگان

1 استادیار، گروه مهندسی مکانیک، دانشکده فنی و مهندسی، دانشگاه بناب، بناب، ایران

2 فارغ‌التحصیل کارشناسی مهندسی مکانیک، دانشکده فنی و مهندسی، دانشگاه بناب، بناب، ایران

چکیده

زمینه و هدف: هدف این پژوهش، مدل‌سازی نحوه انتشار گازهای آلاینده‌ خروجی از دودکش نیروگاه حرارتی تبریز به منظور تعیین غلظت این آلاینده‌ها در مناطق مجاور نیروگاه است.

مواد و روش‌ها: در این پژوهش، مدل‌سازی انتشار گازهای آلاینده ناشی از فعالیت نیروگاه حرارتی تبریز با نرم‌افزار AERMOD انجام شده است تا غلظت گازهای دی‌اکسید گوگرد و دی‌اکسید نیتروژن در مناطق پیرامونی و شهرستان‌های هم‌جوار در منطقه‌ای مربعی شکل به ضلع 44/85 کیلومتر بررسی شود. داده‌های استفاده شده در این مدل‌سازی شامل اطلاعات هواشناسی یک ساله، اطلاعات منبع انتشار آلایندگی، و اطلاعات جغرافیایی منطقه مورد مطالعه هستند. در این مدل‌سازی، الگوی پخش آلودگی و میزان غلظت آلاینده در سطح زمین برای مناطق پیرامونی نیروگاه حرارتی تبریز در معیارهای 1، 3، 24 ساعته و میانگین سالانه محاسبه شده است.

یافته‌ها: نتایج محاسبات نشان می‌دهد که حداکثر غلظت آلاینده دی‌اکسید نیتروژن در منطقه مورد بررسی، در معیارهای 1، 3، 24 ساعته و میانگین سالانه به ترتیب برابر با 957، 510، 135 و 5/21 میکروگرم بر مترمکعب و حداکثر غلظت آلاینده دی‌اکسید گوگرد در معیارهای 1، 3، 24 ساعته و میانگین سالانه به ترتیب برابر با 3998، 2208، 584 و 22/6 میکروگرم بر مترمکعب است.

نتیجه‌گیری: مقایسه نتایج با حدود مجاز در استانداردهای محیط‌زیستی نشان میدهد که حداکثر غلظت آلایندههای دی‌اکسیدگوگرد و دی‌اکسیدنیتروژن در برخی از نواحی پرجمعیت مسکونی مجاور نیروگاه بالاتر از حد مجاز در برخی از معیارها هستند و این آلاینده‌ها می‌توانند سلامت ساکنین اطراف این نیروگاه را در مخاطره قرار دهند. 

کلیدواژه‌ها

عنوان مقاله [English]

Modeling the dispersion of pollutant gases from the chimney of the Tabriz thermal power plant with AERMOD software

نویسندگان [English]

  • Mahdi Saghafi 1
  • Ali Hajiabdollahi Mamaghani 2

1 Assistant Professor, Department of Mechanical Engineering, Faculty of Engineering, University of Bonab, Bonab, Iran

2 BSc graduate, Department of Mechanical Engineering, Faculty of Engineering, University of Bonab, Bonab, Iran

چکیده [English]

Background and purpose: The objective of this study is to simulate the release of pollutant gases from the chimney of the Tabriz thermal power plant to ascertain the concentration of these pollutants in the vicinity of the power plant.
 
Materials and Methods: The dispersion of pollutants emitted by the Tabriz thermal power plant is modeled using AERMOD software to analyze the concentrations of sulfur dioxide and nitrogen dioxide in nearby areas and neighboring cities within a 44.85 km square. The data utilized for this modeling encompass one-year meteorological records, emission source particulars, and geographical data. This modeling calculated the distribution pattern of pollution and pollutant concentrations on the ground surface near the Tabriz thermal power plant for intervals of 1, 3, and 24 hours, as well as the annual average.
 
Results: The calculated results reveal that the maximum concentrations of nitrogen dioxide in the studied area, for intervals of 1, 3, and 24 hours, and the annual average are 957, 510, 135, and 5.21 micrograms per cubic meter, respectively. Similarly, the maximum concentrations of sulfur dioxide, for the same intervals, are 3998, 2208, 584, and 22.6 micrograms per cubic meter, respectively.
 
Conclusion: The findings indicate that the maximum concentrations of sulfur dioxide and nitrogen dioxide in certain densely populated residential zones exceed the permissible limits set by environmental standards for specific criteria. Consequently, the health of residents near this power plant could be at risk.

کلیدواژه‌ها [English]

  • Air Pollutants
  • Sulfur Dioxide
  • Nitrogen Dioxide
  • Computational Modeling
  • Power Plant
1. Abdi A, Abessi O, Khavasi E. Numerical Modeling for transport and distribution of carbon monoxide plume in indoor spaces and stagnant environment. Journal of Research in Environmental Health. 2022;8(3):233-48 (Persian).
 
2. Aleahmad M, Karbassi A, Davami AH, et al. A feasibility study of using Mahshahr city's meteorological and air quality data to evaluate air pollution. Journal of Research in Environmental Health. 2022;8(2):148-59 (Persian).  
 
3. Asaei-Moamam Z-S, Safi-Esfahani F, Mirjalili S, et al. Air quality particulate-pollution prediction applying GAN network and the neural Turing machine. Applied Soft Computing. 2023:110723.
https://doi.org/10.1016/j.asoc.2023.110723  
 
4. Zarei A, Zarei S, Kakapor V, et al. Prediction of daily PM2.5 concentration using support vector training combination (SVM) - adaptive and principal component analysis (PCA). Journal of Research in Environmental Health. 2023;9(1):108-21 (Persian).  
 
5. Snoun H, Krichen M, Chérif H. A comprehensive review of Gaussian atmospheric dispersion models: current usage and future perspectives. Euro-Mediterranean Journal for Environmental Integration. 2023;8(1):219-42.
https://doi.org/10.1007/s41207-023-00354-6  
 
6. Leelőssy Á, Molnár F, Izsák F, et al. Dispersion modeling of air pollutants in the atmosphere: a review. Open Geosciences. 2014;6(3):257-78.
https://doi.org/10.2478/s13533-012-0188-6  
 
7. Cimorelli AJ, Perry SG, Venkatram A, et al. AERMOD: A Dispersion Model for Industrial Source Applications. Part I: General Model Formulation and Boundary Layer Characterization. Journal of Applied Meteorology. 2005;44(5):682-93.
https://doi.org/10.1175/JAM2227.1  
 
8. Khazini L, Jamshidi Kalajahi M, Qiami Giashi K, et al. Investigation of Emission and Dispersion of PM2.5 Pollutant Emitted from BRT Buses in Tabriz City. Journal of Civil and Environmental Engineering. 2021;50.4(101):33-43 (Persian).  
 
9. Khazini L, Jamshidi Kalajahi M, Blond N, et al. Investigation of Emissions and Dispersion of Pollutants from Cars in Tabriz City. Journal of Civil and Environmental Engineering. 2019;49.3(96):23-34 (Persian).  
 
10. Francisco DM, Heist DK, Venkatram A, et al. Observations and parameterization of the effects of barrier height and source-to-barrier distance on concentrations downwind of a roadway. Atmospheric Pollution Research. 2022;13(4):101385.
https://doi.org/10.1016/j.apr.2022.101385
PMid:35450153 PMCid:PMC9016629  
 
11. Munjal A, Sharma S, Nema AK, et al. Factors affecting particulate matter levels near highway toll plazas in India. Transportation Research Part D: Transport and Environment. 2022;110:103403.
https://doi.org/10.1016/j.trd.2022.103403  
 
12. Irankunda E, Török Z, Mereuță A, et al. The comparison between in-situ monitored data and modelled results of nitrogen dioxide (NO2): case-study, road networks of Kigali city, Rwanda. Heliyon. 2022;8(12):e12390.
https://doi.org/10.1016/j.heliyon.2022.e12390
PMid:36590563 PMCid:PMC9800557  
 
13. Ghorbani H, Talebi AF. Dispersion modeling of NOx and SO2 pollutions using AERMOD model (Case study of Shahid Salimi power plant, Neka). Journal of Environmental Science Studies. 2023;8(2):6647-61 (Persian).  
 
14. Momeni I, Danehkar A, Karimi S, et al. Dispersion modelling of SO2 pollution Emitted from Ramin Ahwaz power plant using AERMOD model. Human & Environment. 2011;9(3):3-8 (Persian).  
 
15. Esmaeilzadeh M, Bazrafshan E, Nasrabadi M. Dispersion Modeling of NOx and SO2 Emissions from Tous Gas Power Plant, Mashhad. Iranian Journal of Health and Environment. 2013;6(1):77-90 (Persian).  
 
16. Atabi F, Jafarigol F, Momeni M, et al. Dispersion Modeling of CO with AERMOD in South Pars fourth Gas Refinery. Journal of Environmental Health Engineering. 2014;1(4):281-92 (Persian).  
 
17. Rahimi R, Mansouri N, Alsheikh AA, et al. Evaluation of amount, emission factors and concentrations of SO2, NO2 and CO in ILAM Gas Refinery. Journal of Environmental Science and Technology. 2021;23(3):71-85 (Persian).  
 
18. Zoroufchi Benis K, Fatehifar E, Ahmadi J, et al. Simulation of Pollution Distribution around the Tabriz Oil Refining Company by using ISCST Model. Journal of Civil and Environmental Engineering. 2015;44.4(77):99-106 (Persian).  
 
19. Jamshidi Angas M, Jozi SA, Hejazi R, et al. The Survey of CO Distribution from the Oil Refinery Stacks Using AERMOD Dispersion Model. International Journal of Occupational Hygiene. 2015;13(1).  
 
20. Keykhosravi SS, Nejadkoorki F, Zamani S. Developing a Risk Assessment Model for Respiratory Exposure to Toxic Chemical pollutants in one of gas refineries in South Pars using a Combination of AERMOD and SQRA Methods. J-Health-Saf-Work. 2023;13(1):109-28 (Persian).  
 
21. Jafarigol F, Atabi F, Momeni M. The Survey of NOX Distribution Using Dispersion Models AERMOD and CALPUFF at a Gas Refinery. Journal of Environmental Health Engineering. 2016;3(3):193-205 (Persian).
https://doi.org/10.18869/acadpub.jehe.3.3.193  
 
22. Hallaji H, Bohloul MR, Peyghambarzadeh SM, et al. Measurement of air pollutants concentrations from stacks of petrochemical company and dispersion modeling by AERMOD coupled with WRF model. International Journal of Environmental Science and Technology. 2023;20(7):7217-36 (Persian).
https://doi.org/10.1007/s13762-023-04959-w  
 
23. Karimi S, Asghari M, Rabie R, et al. Machine learning-based white-box prediction and correlation analysis of air pollutants in proximity to industrial zones. Process Safety and Environmental Protection. 2023;178:1009-25.
https://doi.org/10.1016/j.psep.2023.08.096  
 
24. Asadollahfardi G, Delnavaz M, Khajoo'e A. SO2 dispersion mathematical simulation of flare combustion, case study: Aboozar oil and gas platform in Kharg Island. Modares Civil Engineering journal. 2016;16(2):9-20 (Persian).  
 
25. Noorpoor A, Kazemi Shahabi N. Dispersion Modeling of Air Pollutants from the Ilam Cement Factory Stack. Journal of Civil and Environmental Engineering. 2014;44.1(74):107-16 (Persian).  
 
26. Shojaee Barjoee S, Azimzadeh H, kuchakzadeh M, et al. Dispersion and Health Risk Assessment of PM10 Emitted from the Stacks of a Ceramic and Tile industry in Ardakan, Yazd, Iran, Using the AERMOD Model. Iranian South Medical Journal. 2019;22(5):317-32 (Persian).
https://doi.org/10.29252/ismj.22.5.317  
 
27. Bajoghli M, Abari M, Radnezhad H. Dispersion Modeling of Total Suspended Particles (TSP) Emitted from a Steel Plant at Different Time Scales Using AERMOD View. Journal of Earth, Environment and Health Sciences. 2016;2(2):77-82.
https://doi.org/10.4103/2423-7752.191399  
 
28. Pandey G, Venkatram A, Arunachalam S. Evaluating AERMOD with measurements from a major U.S. airport located on a shoreline. Atmospheric Environment. 2023;294:119506.
https://doi.org/10.1016/j.atmosenv.2022.119506  
 
29. Haq Au, Nadeem Q, Farooq A, et al. Assessment of AERMOD modeling system for application in complex terrain in Pakistan. Atmospheric Pollution Research. 2019;10(5):1492-7.
https://doi.org/10.1016/j.apr.2019.04.006  
 
30. Moreno-Silva C, Calvo DC, Torres N, et al. Hydrogen sulphide emissions and dispersion modelling from a wastewater reservoir using flux chamber measurements and AERMOD® simulations. Atmospheric Environment. 2020;224:117263.
https://doi.org/10.1016/j.atmosenv.2020.117263  
 
31. Li R, Han Z, Shen H, et al. Volatile sulfur compound emissions and health risk assessment from an A2/O wastewater treatment plant. Science of The Total Environment. 2021;794:148741.
https://doi.org/10.1016/j.scitotenv.2021.148741
PMid:34323741  
 
32. Huang D, Guo H. Performance of AERMOD for predicting livestock odour dispersion under Canadian Prairies climate and flat terrain. Biosystems Engineering. 2023;226:223-37.
https://doi.org/10.1016/j.biosystemseng.2023.01.015  
 
33. Yang Z, Evans MN, Buser MD, et al. Improving modeling of low-altitude particulate matter emission and dispersion: A cotton gin case study. Journal of Environmental Sciences. 2023;133:8-22.
https://doi.org/10.1016/j.jes.2022.03.048
PMid:37451791  
 
34. Mott A, Guo H. Odour dispersion modelling, impact criteria, and setback distances for an oil refinery plant. Atmospheric Environment. 2022;270:118879.
https://doi.org/10.1016/j.atmosenv.2021.118879  
 
35. Mendoza-Lara OO, Ortega-Montoya CY, Prieto Hinojosa AI, et al. An empirical and modelling approach to the evaluation of cruise ships' influence on air quality: The case of La Paz, Mexico. Science of The Total Environment. 2023;886:163855.
https://doi.org/10.1016/j.scitotenv.2023.163855
PMid:37142024  
 
36. Zeng W, Wan X, Gu G, et al. An interpolation method incorporating the pollution diffusion characteristics for soil heavy metals - taking a coke plant as an example. Science of The Total Environment. 2023;857:159698.
https://doi.org/10.1016/j.scitotenv.2022.159698
PMid:36309258  
 
37. Zhang H, Gao J, Bai Y, et al. Delimiting radiation protection distance of underground uranium mining and metallurgy facilities: A case study in China. Heliyon. 2022;8(12):e12419.
https://doi.org/10.1016/j.heliyon.2022.e12419
PMid:36590546 PMCid:PMC9800555  
 
38. Lolila F, Mazunga MS. Measurements of natural radioactivity and evaluation of radiation hazard indices in soils around the Manyoni uranium deposit in Tanzania. Journal of Radiation Research and Applied Sciences. 2023;16(1):100524.
https://doi.org/10.1016/j.jrras.2023.100524  
 
39. Ghaemi far S, Aghaie M, Minuchehr A, et al. Evaluation of atmospheric dispersion of radioactive materials in a severe accident of the BNPP based on Gaussian model. Progress in Nuclear Energy. 2019;113:114-27.
https://doi.org/10.1016/j.pnucene.2019.01.019  
 
40. Ahmadi J, Kahforoshan D, Zoroufchi-Benis K, et al. Modeling air pollution distribution using ISCST3 model around Tabriz thermal power plant. Iranian Chemical Engineering Journal. 2015;14(81):48-56 (Persian).  
 
41. U.S. Environmental Protection Agency. Air Quality Dispersion Modeling - Preferred and Recommended Models United States, 2023. Available from: https://www.epa.gov/scram/air-quality-dispersion-modeling-preferred-and-recommended-models.  
 
42. U.S. Environmental Protection Agency. AERMOD Model Formulation. Research Triangle Park, NC: Office of Air Quality Planning and Standards Air Quality Assessment Division; 2023.  
 
43. Department of Environment. Ambient Air Quality Standard Tehran, Iran, 2017. Available from: https://nacc.doe.ir/portal/file/?738087/%D8%A7%D8%B3%D8%AA%D8%A7%D9%86%D8%AF%D8%A7%D8%B1-%DA%A9%D9%8A%D9%81%D9%8A%D8%AA-%D9%87%D9%88%D8%A7%D9%8A-%D8%A2%D8%B2%D8%A7%D8%AF.pdf (Persian).  
 
44. World Health Organization. WHO global air quality guidelines: particulate matter (PM2.5 and PM10), ozone, nitrogen dioxide, sulfur dioxide and carbon monoxide. Geneva: World Health Organization; 2021.  
 
45. Faulkner WB, Shaw BW, Grosch T. Sensitivity of Two Dispersion Models (AERMOD and ISCST3) to Input Parameters for a Rural Ground-Level Area Source. Journal of the Air & Waste Management Association. 2008;58(10):1288-96.
https://doi.org/10.3155/1047-3289.58.10.1288