1. Shen F, Liao R, Ali A, Mahar A, Guo D, Li R, et al. Spatial distribution and risk assessment of heavy metals in soil near a Pb/Zn smelter in Feng County, China. Ecotoxicology and Environmental Safety. 2017;139:254-62. https://doi.org/10.1016/j.ecoenv.2017.01.044PMid:28160703
|
|
2. Zhu G, Xiao H, Guo Q, Song B, Zheng G, Zhang Z, et al. Heavy metal contents and enrichment characteristics of dominant plants in wasteland of the downstream of a lead-zinc mining area in Guangxi, Southwest China. Ecotoxicology and Environmental safety. 2018;151:266-71. https://doi.org/10.1016/j.ecoenv.2018.01.011PMid:29407559
|
|
|
3. Navarro M, Pérez-Sirvent C, Martínez-Sánchez M, Vidal J, Tovar P, Bech J. Abandoned mine sites as a source of contamination by heavy metals: a case study in a semi-arid zone. Journal of Geochemical exploration. 2008;96(2-3):183-93. https://doi.org/10.1016/j.gexplo.2007.04.011
|
|
|
4. Hosseinniaee S, Jafary M, Tavili A, Zare S. Geochemical and ecological assessment of some heavy metals in the soil around the lead and zinc mine in northwestern of Iran. Iranian Journal of Health and Environment. 2021;14(1):159-72. (Persian)
|
|
|
5. Mortensen LH, Rønn R, Vestergård M. Bioaccumulation of cadmium in soil organisms-With focus on wood ash application. Ecotoxicology and environmental safety. 2018;156:452-62. https://doi.org/10.1016/j.ecoenv.2018.03.018PMid:29605665
|
|
|
6. Saleem MH, Fahad S, Khan SU, Din M, Ullah A, Sabagh AE, et al. Copper-induced oxidative stress, initiation of antioxidants and phytoremediation potential of flax (Linum usitatissimum L.) seedlings grown under the mixing of two different soils of China. Environmental Science and Pollution Research. 2020;27:5211-21. https://doi.org/10.1007/s11356-019-07264-7PMid:31848948
|
|
|
7. Ali W, Mao K, Zhang H, Junaid M, Xu N, Rasool A, et al. Comprehensive review of the basic chemical behaviours, sources, processes, and endpoints of trace element contamination in paddy soil-rice systems in rice-growing countries. Journal of Hazardous Materials. 2020;397:122720. https://doi.org/10.1016/j.jhazmat.2020.122720PMid:32387828
|
|
|
8. Zeng X, Zou D, Wang A, Zhou Y, Liu Y, Li Z, et al. Remediation of cadmium-contaminated soils using Brassica napus: effect of nitrogen fertilizers. Journal of environmental management. 2020;255:109885. https://doi.org/10.1016/j.jenvman.2019.109885PMid:31765948
|
|
|
9. Bortey-Sam N, Nakayama SM, Ikenaka Y, Akoto O, Baidoo E, Yohannes YB, et al. Human health risks from metals and metalloid via consumption of food animals near gold mines in Tarkwa, Ghana: Estimation of the daily intakes and target hazard quotients (THQs). Ecotoxicology and environmental safety. 2015;111:160-7. https://doi.org/10.1016/j.ecoenv.2014.09.008PMid:25450929
|
|
|
|
|
|
11. Ahmad K, Khan Z, Bayat A, Ashraf M, Rizwan Y. Cadmium and chromium concentrations in six forage species irrigated with canal, sewage or mixed canal and sewage water. Pak J Bot. 2011;43(5):2411-4.
|
|
|
12. Farmer JG, Broadway A, Cave MR, Wragg J, Fordyce FM, Graham MC, et al. A lead isotopic study of the human bioaccessibility of lead in urban soils from Glasgow, Scotland. Science of the total environment. 2011;409(23):4958-65. https://doi.org/10.1016/j.scitotenv.2011.08.061PMid:21930292
|
|
|
|
|
|
14. Hosseinniaee S, Mirzaei E. Phytoremediation-Promising Green Technology for Remediation of Heavy Metal Contaminated Lands. Zist Sepehr Student Magazine. 2022;15(1):37-44. (Persian)
|
|
|
15. Han Y, Huang S, Yuan H, Gu J, Zhao J, Wu X, Si W. Effect of Pb and Zn combined stress on the growth and elements accumulation of two different ecotype species of Iris L. in artificial contaminated soils. Fresenius Environmental Bulletin. 2013;22(5a):1548-55.
|
|
|
16. Abadin H, Taylor J, Buser MC, Scinicariello F, Przybyla J, Klotzbach JM, et al. Toxicological profile for lead: draft for public comment. 2019.
|
|
|
17. Manyiwa T, Ultra VU, Rantong G, Opaletswe KA, Gabankitse G, Taupedi SB, Gajaje K. Heavy metals in soil, plants, and associated risk on grazing ruminants in the vicinity of Cu-Ni mine in Selebi-Phikwe, Botswana. Environmental Geochemistry and Health. 2021:1-16. https://doi.org/10.1007/s10653-021-00918-xPMid:33855629
|
|
|
18. Hosseinniaee S, Jafari M, Tavili A, Zare S, Cappai G. Investigating metal pollution in the food chain surrounding a lead-zinc mine (Northwestern Iran); an evaluation of health risks to humans and animals. Environmental Monitoring and Assessment. 2023;195(8):946. https://doi.org/10.1007/s10661-023-11551-9PMid:37439883
|
|
|
19. Kamunda C, Mathuthu M, Madhuku M. Health risk assessment of heavy metals in soils from Witwatersrand Gold Mining Basin, South Africa. International Journal of Environmental Research and Public Health. 2016;13(7):663. https://doi.org/10.3390/ijerph13070663PMid:27376316 PMCid:PMC4962204
|
|
|
20. Gabari V, Fernández-Caliani JC. Assessment of trace element pollution and human health risks associated with cultivation of mine soil: A case study in the Iberian Pyrite Belt. Human and Ecological Risk Assessment: An International Journal. 2017;23(8):2069-86. https://doi.org/10.1080/10807039.2017.1364130
|
|
|
|
|
|
22. Hosseinniaee S, Jafari M, Tavili A, Zare S, Cappai G. EDTA facilitated phytoextraction of Pb, Cd and Zn from a lead-zinc mine contaminated soil by three new accumulator plants (Marrubium cuneatum, Stipa arabica and Verbascum speciosum). 2023. https://doi.org/10.21203/rs.3.rs-2750193/v1PMCid:PMC10692180
|
|
|
|
|
|
24. Sánchez-Pardo B, Zornoza P. Mitigation of Cu stress by legume-Rhizobium symbiosis in white lupin and soybean plants. Ecotoxicology and Environmental Safety. 2014;102:1-5. https://doi.org/10.1016/j.ecoenv.2014.01.016PMid:24580814
|
|
|
25. Hosseinniaee S, Jafari M, Tavili A, Zare S, Cappai G, De Giudici G. Perspectives for phytoremediation capability of native plants growing on Angouran Pb-Zn mining complex in northwest of Iran. Journal of Environmental Management. 2022;315:115184. https://doi.org/10.1016/j.jenvman.2022.115184PMid:35523070
|
|
|
26. Hosseinniaee S, Jafari M, Tavili A, Zare S, Cappai G. Chelate facilitated phytoextraction of Pb, Cd, and Zn from a lead-zinc mine contaminated soil by three accumulator plants. Scientific Reports. 2023;13(1):21185. https://doi.org/10.1038/s41598-023-48666-5PMid:38040787 PMCid:PMC10692180
|
|
|
27. Rehman MZ-u, Rizwan M, Ali S, Fatima N, Yousaf B, Naeem A, et al. Contrasting effects of biochar, compost and farm manure on alleviation of nickel toxicity in maize (Zea mays L.) in relation to plant growth, photosynthesis and metal uptake. Ecotoxicology and Environmental Safety. 2016;133:218-25. https://doi.org/10.1016/j.ecoenv.2016.07.023PMid:27467022
|
|
|
28. Rizwan M, Ali S, Qayyum MF, Ibrahim M, Zia-ur-Rehman M, Abbas T, Ok YS. Mechanisms of biochar-mediated alleviation of toxicity of trace elements in plants: a critical review. Environmental Science and Pollution Research. 2016;23:2230-48. https://doi.org/10.1007/s11356-015-5697-7PMid:26531712
|
|
|
|
|
|
30. Garau M, Castaldi P, Diquattro S, Pinna MV, Senette C, Roggero PP, Garau G. Combining grass and legume species with compost for assisted phytostabilization of contaminated soils. Environmental Technology & Innovation. 2021;22:101387. https://doi.org/10.1016/j.eti.2021.101387
|
|
|
31. Bian R, Joseph S, Cui L, Pan G, Li L, Liu X, et al. A three-year experiment confirms continuous immobilization of cadmium and lead in contaminated paddy field with biochar amendment. Journal of hazardous materials. 2014;272:121-8. https://doi.org/10.1016/j.jhazmat.2014.03.017PMid:24685528
|
|
|
32. Visconti D, Álvarez-Robles MJ, Fiorentino N, Fagnano M, Clemente R. Use of Brassica juncea and Dactylis glomerata for the phytostabilization of mine soils amended with compost or biochar. Chemosphere. 2020;260:127661. https://doi.org/10.1016/j.chemosphere.2020.127661PMid:32688327
|
|
|
33. Li J, Chang Y, Al-Huqail AA, Ding Z, Al-Harbi MS, Ali EF, et al. Effect of manure and compost on the phytostabilization potential of heavy metals by the halophytic plant wavy-leaved saltbush. Plants. 2021;10(10):2176. https://doi.org/10.3390/plants10102176PMid:34685988 PMCid:PMC8539195
|
|
|
34. Khan S, Reid BJ, Li G, Zhu Y-G. Application of biochar to soil reduces cancer risk via rice consumption: a case study in Miaoqian village, Longyan, China. Environment international. 2014;68:154-61. https://doi.org/10.1016/j.envint.2014.03.017PMid:24727070
|
|
|
35. Fresno T, Moreno-Jiménez E, Zornoza P, Peñalosa JM. Aided phytostabilisation of As-and Cu-contaminated soils using white lupin and combined iron and organic amendments. Journal of environmental management. 2018;205:142-50. https://doi.org/10.1016/j.jenvman.2017.09.069PMid:28982063
|
|
|
36. Garau G, Silvetti M, Vasileiadis S, Donner E, Diquattro S, Deiana S, et al. Use of municipal solid wastes for chemical and microbiological recovery of soils contaminated with metal (loid) s. Soil Biology and Biochemistry. 2017;111:25-35. https://doi.org/10.1016/j.soilbio.2017.03.014
|
|
|
37. Eissa MA, Al-Yasi HM, Ghoneim AM, Ali EF, El Shal R. Nitrogen and compost enhanced the phytoextraction potential of cd and pb from contaminated soils by quail bush [Atriplex lentiformis (Torr.) S. Wats]. Journal of Soil Science and Plant Nutrition. 2022:1-9. https://doi.org/10.1007/s42729-021-00642-6
|
|
|
|
|
|
39. Olsen S, Sommers L. Phosphorus.[In:] Page, AL et al.(Eds.), Methods of soil analysis: Part 2. Chemical and microbiological properties. Agronomy Monographs. Madison, WI., 403-430. 1982. https://doi.org/10.2134/agronmonogr9.2.2ed.c24PMCid:PMC4606764
|
|
|
40. Element C. Method 3051A microwave assisted acid digestion of sediments, sludges, soils, and oils. Z Für Anal Chem. 2007;111:362-6.
|
|
|
|
|
|
42. Smith K, Abrahams PW, Dagleish M, Steigmajer J. The intake of lead and associated metals by sheep grazing mining-contaminated floodplain pastures in mid-Wales, UK: I. Soil ingestion, soil-metal partitioning and potential availability to pasture herbage and livestock. Science of the Total Environment. 2009;407(12):3731-9. https://doi.org/10.1016/j.scitotenv.2009.02.032PMid:19327816
|
|
|
43. De Vries W, Römkens PF, Schütze G. Critical soil concentrations of cadmium, lead, and mercury in view of health effects on humans and animals. Reviews of environmental contamination and toxicology. 2007:91-130. https://doi.org/10.1007/978-0-387-69163-3_4PMid:17708073
|
|
|
44. Rodrigues S, Pereira M, Duarte A, Römkens P. Soil-plant-animal transfer models to improve soil protection guidelines: a case study from Portugal. Environment International. 2012;39(1):27-37. https://doi.org/10.1016/j.envint.2011.09.005PMid:22208740
|
|
|
45. Brand E, PFO L. an exposure model for human risk assessment of soil contamination A model description. The National Institute for Public Health and the Environment (RIVM), Dutch. 2007.
|
|
|
46. Portuguesa IBA. Portuguesa 1990-2003 [Relatório de informação à comunicação social]. Lisboa: Instituto Nacional de Estatística. 2006.
|
|
|
47. Poursattari R, Hadi H. Lead phytoremediation, distribution, and toxicity in rapeseed (Brassica napus L.): The role of single and combined use of plant growth regulators and chelators. Journal of Soil Science and Plant Nutrition. 2022;22(2):1700-17. https://doi.org/10.1007/s42729-022-00765-4
|
|
|
|
|
|
49. Shahzad AS, Younis U, Naz N, Danish S, Syed A, Elgorban AM, et al. Acidified biochar improves lead tolerance and enhances morphological and biochemical attributes of mint in saline soil. Scientific Reports. 2023;13(1):8720. https://doi.org/10.1038/s41598-023-36018-2PMid:37253839 PMCid:PMC10229572
|
|
|
50. Garau M, Garau G, Diquattro S, Roggero PP, Castaldi P. Mobility, bioaccessibility and toxicity of potentially toxic elements in a contaminated soil treated with municipal solid waste compost. Ecotoxicology and Environmental Safety. 2019;186:109766. https://doi.org/10.1016/j.ecoenv.2019.109766PMid:31605957
|
|
|
|
|
|
52. Masu S, Dragomir N, Morariu F, Jurj L, Luminita N, Popescu D. The bioaccumulation of heavy metals in barley (Hordeum vulgare L) cultivated on a fly ash dump mixed with compost and natural zeolite materials. Scientific Papers: Animal Science and Biotechnologies. 2012;45(2):237.
|
|
|
53. Castaldi P, Silvetti M, Manzano R, Brundu G, Roggero PP, Garau G. Mutual effect of Phragmites australis, Arundo donax and immobilization agents on arsenic and trace metals phytostabilization in polluted soils. Geoderma. 2018;314:63-72. https://doi.org/10.1016/j.geoderma.2017.10.040
|
|
|
54. Eissa MA, Ahmed EM. Nitrogen and phosphorus fertilization for some Atriplex plants grown on metal-contaminated soils. Soil and Sediment Contamination: An International Journal. 2016;25(4):431-42. https://doi.org/10.1080/15320383.2016.1158693
|
|
|
55. Zulfiqar U, Farooq M, Hussain S, Maqsood M, Hussain M, Ishfaq M, et al. Lead toxicity in plants: Impacts and remediation. Journal of environmental management. 2019;250:109557. https://doi.org/10.1016/j.jenvman.2019.109557PMid:31545179
|
|
|
56. Beesley L, Marmiroli M, Pagano L, Pigoni V, Fellet G, Fresno T, et al. Biochar addition to an arsenic contaminated soil increases arsenic concentrations in the pore water but reduces uptake to tomato plants (Solanum lycopersicum L.). Science of the Total Environment. 2013;454:598-603. https://doi.org/10.1016/j.scitotenv.2013.02.047PMid:23583727
|
|
|
57. Medyńska-Juraszek A, Bednik M, Chohura P. Assessing the influence of compost and biochar amendments on the mobility and uptake of heavy metals by green leafy vegetables. International Journal of Environmental Research and Public Health. 2020;17(21):7861. https://doi.org/10.3390/ijerph17217861PMid:33121066 PMCid:PMC7662399
|
|
|
58. Gul I, Manzoor M, Hashim N, Yaqoob K, Kallerhoff J, Arshad M. Comparative effectiveness of organic and inorganic amendments on cadmium bioavailability and uptake by Pelargonium hortorum. Journal of Soils and Sediments. 2019;19:2346-56. https://doi.org/10.1007/s11368-018-2202-1
|
|
|
59. Yan F, Zhu Y, Muller C, Zörb C, Schubert S. Adaptation of H+-pumping and plasma membrane H+ ATPase activity in proteoid roots of white lupin under phosphate deficiency. Plant physiology. 2002;129(1):50-63. https://doi.org/10.1104/pp.010869PMid:12011337 PMCid:PMC155870
|
|
|
|
|
|
61. McDowell LR. Minerals in animal and human nutrition: Academic Press Inc.; 1992.
|
|
|
62. Pescatore A, Grassi C, Rizzo AM, Orlandini S, Napoli M. Effects of biochar on berseem clover (Trifolium alexandrinum, L.) growth and heavy metal (Cd, Cr, Cu, Ni, Pb, and Zn) accumulation. Chemosphere. 2022;287:131986. https://doi.org/10.1016/j.chemosphere.2021.131986PMid:34481173
|
|
|
63. Khan S, Wang N, Reid BJ, Freddo A, Cai C. Reduced bioaccumulation of PAHs by Lactuca satuva L. grown in contaminated soil amended with sewage sludge and sewage sludge derived biochar. Environmental pollution. 2013;175:64-8. https://doi.org/10.1016/j.envpol.2012.12.014PMid:23337353
|
|
|