تعهد نامه

نوع مقاله : مقالات پژوهشی

نویسندگان

گروه احیاء مناطق خشک و کوهستانی، دانشکده منابع طبیعی، دانشگاه تهران، کرج، ایران.

چکیده

زمینه و هدف: نگرانی‌های عمومی درباره تأثیر آلاینده‌های محیطی بر سلامت انسان منجر به افزایش توجه به وجود مواد سمی در رژیم غذایی انسان و حیوان در دهه‌های گذشته شده است. هدف از مطالعه حاضر ارزیابی تأثیر کمپوست پسماند شهری بر کاهش غلظت فلز سرب در رژیم غذایی و اندام‌های نشخوارکنندگان چراکننده می‌باشد. 

مواد و روش‌ها: در یک آزمایش گلخانه‌ای کمپوست در چهار سطح 0، 1، 3 و 5 درصد وزنی به یک خاک معدنی آلوده به سرب اضافه شد و به مدت شش ماه گیاه Stipa arabica (استیپا) در آن کشت داده شد. بعد از برداشت گیاه، غلظت سرب خاک و ریشه و شاخساره با استفاده از دستگاه ICP-OES مشخص شد. سپس میزان دریافت روزانه سرب توسط گاو و گوسفند و غلظت آن‌ در اندام‌ها بر اساس مدل‌های زنجیره غذایی تعیین و با استانداردهای اتحادیه اروپا در رابطه با کیفیت محصولات حیوانی از دیدگاه سلامت حیوان و امنیت غذایی برای انسان به عنوان حد بحرانی مقایسه شد. 

یافته‌ها: نتایج نشان داد که کمپوست توانست با کاهش 65 و 60 درصدی به ترتیب برای گاو و گوسفند، دریافت روزانه سرب را به حد مجاز از دیدگاه سلامت حیوان برساند. تجمع سرب در اندام‌ها به صورت کلیه > کبد > گوشت بود که با اعمال کمپوست تا % 64/77 کاهش یافت و از لحاظ سلامت حیوان غلظت سرب در همه اندام‌ها به حد ایمن کاهش پیدا کرد و از دیدگاه امنیت غذایی غلظت آن را برای مصرف گوشت توسط انسان به کمتر از مقدار استاندارد رساند.

نتیجه‌گیری: کمپوست پسماند شهری به عنوان یک بهساز آلی می‌تواند به طور معنی‌داری غلظت سرب در رژیم غذایی و بافت‌های حیوانات را کاهش دهد و آن را به حد مجاز برساند.

کلیدواژه‌ها

عنوان مقاله [English]

Evaluation of the effect of municipal waste compost in reducing lead accumulation in animal diet and organs

نویسندگان [English]

  • Sadegh Hosseinniaee
  • Mohammad Jafari
  • Ali Tavili
  • Salman Zare

Department of reclamation of arid and mountainous regions, natural resources faculty, University of Tehran, Karaj, Iran

چکیده [English]

Background and Purpose: Public concern over the effects of environmental pollutants on human health has intensified, prompting heightened scrutiny of toxic substances in human and animal diets over recent decades. This study aims to assess the impact of municipal waste compost on diminishing lead (Pb) concentrations in the diets and organs of grazing ruminants.
 
Materials and Methods: In a controlled greenhouse experiment, compost was incorporated into naturally Pb-contaminated soil at four concentrations: 0%, 1%, 3%, and 5% (w/w). Stipa arabica plants were cultivated over six months. Subsequently, the Pb content in soil and plants was measured using Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-OES). The daily Pb intake by cattle and sheep and its accumulation in their organs were then calculated using food chain models. These findings were evaluated against EU standards for animal product quality, focusing on animal health and human food safety.
 
Results: The study identified the 1% compost addition as the most effective concentration, reducing Pb intake by 65% in cows and 60% in sheep, aligning with permissible health standards. Lead accumulation in the organs followed the pattern of kidneys > liver > muscle tissue, with a 64.77% decrease observed upon compost application. The Pb levels in all tested organs were lowered to safe thresholds concerning animal health. Moreover, Pb concentrations in meat fell below the standard limits, ensuring food safety for human consumption.
 
Conclusion: Municipal waste compost, as an organic amendment, can significantly lower lead concentrations in the diets and tissues of grazing animals, ensuring levels remain within acceptable limits.

کلیدواژه‌ها [English]

  • Lead
  • Municipal waste compost
  • Health risk
  • Grazing ruminants
  • Stipa arabica
 
     
 
     
1. Shen F, Liao R, Ali A, Mahar A, Guo D, Li R, et al. Spatial distribution and risk assessment of heavy metals in soil near a Pb/Zn smelter in Feng County, China. Ecotoxicology and Environmental Safety. 2017;139:254-62.
https://doi.org/10.1016/j.ecoenv.2017.01.044
PMid:28160703
 
2. Zhu G, Xiao H, Guo Q, Song B, Zheng G, Zhang Z, et al. Heavy metal contents and enrichment characteristics of dominant plants in wasteland of the downstream of a lead-zinc mining area in Guangxi, Southwest China. Ecotoxicology and Environmental safety. 2018;151:266-71.
https://doi.org/10.1016/j.ecoenv.2018.01.011
PMid:29407559
 
 
3. Navarro M, Pérez-Sirvent C, Martínez-Sánchez M, Vidal J, Tovar P, Bech J. Abandoned mine sites as a source of contamination by heavy metals: a case study in a semi-arid zone. Journal of Geochemical exploration. 2008;96(2-3):183-93.
https://doi.org/10.1016/j.gexplo.2007.04.011
 
 
4. Hosseinniaee S, Jafary M, Tavili A, Zare S. Geochemical and ecological assessment of some heavy metals in the soil around the lead and zinc mine in northwestern of Iran. Iranian Journal of Health and Environment. 2021;14(1):159-72. (Persian)
 
 
5. Mortensen LH, Rønn R, Vestergård M. Bioaccumulation of cadmium in soil organisms-With focus on wood ash application. Ecotoxicology and environmental safety. 2018;156:452-62.
https://doi.org/10.1016/j.ecoenv.2018.03.018
PMid:29605665
 
 
6. Saleem MH, Fahad S, Khan SU, Din M, Ullah A, Sabagh AE, et al. Copper-induced oxidative stress, initiation of antioxidants and phytoremediation potential of flax (Linum usitatissimum L.) seedlings grown under the mixing of two different soils of China. Environmental Science and Pollution Research. 2020;27:5211-21.
https://doi.org/10.1007/s11356-019-07264-7
PMid:31848948
 
 
7. Ali W, Mao K, Zhang H, Junaid M, Xu N, Rasool A, et al. Comprehensive review of the basic chemical behaviours, sources, processes, and endpoints of trace element contamination in paddy soil-rice systems in rice-growing countries. Journal of Hazardous Materials. 2020;397:122720.
https://doi.org/10.1016/j.jhazmat.2020.122720
PMid:32387828
 
 
8. Zeng X, Zou D, Wang A, Zhou Y, Liu Y, Li Z, et al. Remediation of cadmium-contaminated soils using Brassica napus: effect of nitrogen fertilizers. Journal of environmental management. 2020;255:109885.
https://doi.org/10.1016/j.jenvman.2019.109885
PMid:31765948
 
 
9. Bortey-Sam N, Nakayama SM, Ikenaka Y, Akoto O, Baidoo E, Yohannes YB, et al. Human health risks from metals and metalloid via consumption of food animals near gold mines in Tarkwa, Ghana: Estimation of the daily intakes and target hazard quotients (THQs). Ecotoxicology and environmental safety. 2015;111:160-7.
https://doi.org/10.1016/j.ecoenv.2014.09.008
PMid:25450929
 
 
10. Khan ZI, Ahmad K, Siddique S, Ahmad T, Bashir H, Munir M, et al. A study on the transfer of chromium from meadows to grazing livestock: an assessment of health risk. Environmental Science and Pollution Research. 2020;27:26694-701.
https://doi.org/10.1007/s11356-020-09062-y
https://doi.org/10.1007/s11356-020-10660-z
https://doi.org/10.1007/s11356-020-08140-5
 
 
11. Ahmad K, Khan Z, Bayat A, Ashraf M, Rizwan Y. Cadmium and chromium concentrations in six forage species irrigated with canal, sewage or mixed canal and sewage water. Pak J Bot. 2011;43(5):2411-4.
 
 
12. Farmer JG, Broadway A, Cave MR, Wragg J, Fordyce FM, Graham MC, et al. A lead isotopic study of the human bioaccessibility of lead in urban soils from Glasgow, Scotland. Science of the total environment. 2011;409(23):4958-65.
https://doi.org/10.1016/j.scitotenv.2011.08.061
PMid:21930292
 
 
13. Iskandar IK, Kirkham MB. Trace elements in soil: bioavailability, flux, and transfer: CRC Press; 2001.
https://doi.org/10.1201/9781420032734
 
 
14. Hosseinniaee S, Mirzaei E. Phytoremediation-Promising Green Technology for Remediation of Heavy Metal Contaminated Lands. Zist Sepehr Student Magazine. 2022;15(1):37-44. (Persian)
 
 
15. Han Y, Huang S, Yuan H, Gu J, Zhao J, Wu X, Si W. Effect of Pb and Zn combined stress on the growth and elements accumulation of two different ecotype species of Iris L. in artificial contaminated soils. Fresenius Environmental Bulletin. 2013;22(5a):1548-55.
 
 
16. Abadin H, Taylor J, Buser MC, Scinicariello F, Przybyla J, Klotzbach JM, et al. Toxicological profile for lead: draft for public comment. 2019.
 
 
17. Manyiwa T, Ultra VU, Rantong G, Opaletswe KA, Gabankitse G, Taupedi SB, Gajaje K. Heavy metals in soil, plants, and associated risk on grazing ruminants in the vicinity of Cu-Ni mine in Selebi-Phikwe, Botswana. Environmental Geochemistry and Health. 2021:1-16.
https://doi.org/10.1007/s10653-021-00918-x
PMid:33855629
 
 
18. Hosseinniaee S, Jafari M, Tavili A, Zare S, Cappai G. Investigating metal pollution in the food chain surrounding a lead-zinc mine (Northwestern Iran); an evaluation of health risks to humans and animals. Environmental Monitoring and Assessment. 2023;195(8):946.
https://doi.org/10.1007/s10661-023-11551-9
PMid:37439883
 
 
19. Kamunda C, Mathuthu M, Madhuku M. Health risk assessment of heavy metals in soils from Witwatersrand Gold Mining Basin, South Africa. International Journal of Environmental Research and Public Health. 2016;13(7):663.
https://doi.org/10.3390/ijerph13070663
PMid:27376316 PMCid:PMC4962204
 
 
20. Gabari V, Fernández-Caliani JC. Assessment of trace element pollution and human health risks associated with cultivation of mine soil: A case study in the Iberian Pyrite Belt. Human and Ecological Risk Assessment: An International Journal. 2017;23(8):2069-86.
https://doi.org/10.1080/10807039.2017.1364130
 
 
21. Fantke P, Friedrich R, Jolliet O. Health impact and damage cost assessment of pesticides in Europe. Environment international. 2012;49:9-17.
https://doi.org/10.1016/j.envint.2012.08.001
PMid:22940502
 
 
22. Hosseinniaee S, Jafari M, Tavili A, Zare S, Cappai G. EDTA facilitated phytoextraction of Pb, Cd and Zn from a lead-zinc mine contaminated soil by three new accumulator plants (Marrubium cuneatum, Stipa arabica and Verbascum speciosum). 2023.
https://doi.org/10.21203/rs.3.rs-2750193/v1
PMCid:PMC10692180
 
 
23. Barbosa B, Fernando AL. Aided phytostabilization of mine waste. Bio-geotechnologies for mine site rehabilitation: Elsevier; 2018. p. 147-57.
https://doi.org/10.1016/B978-0-12-812986-9.00009-9
PMCid:PMC6034724
 
 
24. Sánchez-Pardo B, Zornoza P. Mitigation of Cu stress by legume-Rhizobium symbiosis in white lupin and soybean plants. Ecotoxicology and Environmental Safety. 2014;102:1-5.
https://doi.org/10.1016/j.ecoenv.2014.01.016
PMid:24580814
 
 
25. Hosseinniaee S, Jafari M, Tavili A, Zare S, Cappai G, De Giudici G. Perspectives for phytoremediation capability of native plants growing on Angouran Pb-Zn mining complex in northwest of Iran. Journal of Environmental Management. 2022;315:115184.
https://doi.org/10.1016/j.jenvman.2022.115184
PMid:35523070
 
 
26. Hosseinniaee S, Jafari M, Tavili A, Zare S, Cappai G. Chelate facilitated phytoextraction of Pb, Cd, and Zn from a lead-zinc mine contaminated soil by three accumulator plants. Scientific Reports. 2023;13(1):21185.
https://doi.org/10.1038/s41598-023-48666-5
PMid:38040787 PMCid:PMC10692180
 
 
27. Rehman MZ-u, Rizwan M, Ali S, Fatima N, Yousaf B, Naeem A, et al. Contrasting effects of biochar, compost and farm manure on alleviation of nickel toxicity in maize (Zea mays L.) in relation to plant growth, photosynthesis and metal uptake. Ecotoxicology and Environmental Safety. 2016;133:218-25.
https://doi.org/10.1016/j.ecoenv.2016.07.023
PMid:27467022
 
 
28. Rizwan M, Ali S, Qayyum MF, Ibrahim M, Zia-ur-Rehman M, Abbas T, Ok YS. Mechanisms of biochar-mediated alleviation of toxicity of trace elements in plants: a critical review. Environmental Science and Pollution Research. 2016;23:2230-48.
https://doi.org/10.1007/s11356-015-5697-7
PMid:26531712
 
 
29. Eissa MA. Impact of compost on metals phytostabilization potential of two halophytes species. International Journal of Phytoremediation. 2015;17(7):662-8.
https://doi.org/10.1080/15226514.2014.955567
PMid:25191928
 
 
30. Garau M, Castaldi P, Diquattro S, Pinna MV, Senette C, Roggero PP, Garau G. Combining grass and legume species with compost for assisted phytostabilization of contaminated soils. Environmental Technology & Innovation. 2021;22:101387.
https://doi.org/10.1016/j.eti.2021.101387
 
 
31. Bian R, Joseph S, Cui L, Pan G, Li L, Liu X, et al. A three-year experiment confirms continuous immobilization of cadmium and lead in contaminated paddy field with biochar amendment. Journal of hazardous materials. 2014;272:121-8.
https://doi.org/10.1016/j.jhazmat.2014.03.017
PMid:24685528
 
 
32. Visconti D, Álvarez-Robles MJ, Fiorentino N, Fagnano M, Clemente R. Use of Brassica juncea and Dactylis glomerata for the phytostabilization of mine soils amended with compost or biochar. Chemosphere. 2020;260:127661.
https://doi.org/10.1016/j.chemosphere.2020.127661
PMid:32688327
 
 
33. Li J, Chang Y, Al-Huqail AA, Ding Z, Al-Harbi MS, Ali EF, et al. Effect of manure and compost on the phytostabilization potential of heavy metals by the halophytic plant wavy-leaved saltbush. Plants. 2021;10(10):2176.
https://doi.org/10.3390/plants10102176
PMid:34685988 PMCid:PMC8539195
 
 
34. Khan S, Reid BJ, Li G, Zhu Y-G. Application of biochar to soil reduces cancer risk via rice consumption: a case study in Miaoqian village, Longyan, China. Environment international. 2014;68:154-61.
https://doi.org/10.1016/j.envint.2014.03.017
PMid:24727070
 
 
35. Fresno T, Moreno-Jiménez E, Zornoza P, Peñalosa JM. Aided phytostabilisation of As-and Cu-contaminated soils using white lupin and combined iron and organic amendments. Journal of environmental management. 2018;205:142-50.
https://doi.org/10.1016/j.jenvman.2017.09.069
PMid:28982063
 
 
36. Garau G, Silvetti M, Vasileiadis S, Donner E, Diquattro S, Deiana S, et al. Use of municipal solid wastes for chemical and microbiological recovery of soils contaminated with metal (loid) s. Soil Biology and Biochemistry. 2017;111:25-35.
https://doi.org/10.1016/j.soilbio.2017.03.014
 
 
37. Eissa MA, Al-Yasi HM, Ghoneim AM, Ali EF, El Shal R. Nitrogen and compost enhanced the phytoextraction potential of cd and pb from contaminated soils by quail bush [Atriplex lentiformis (Torr.) S. Wats]. Journal of Soil Science and Plant Nutrition. 2022:1-9.
https://doi.org/10.1007/s42729-021-00642-6
 
 
38. Nelson DW, Sommers LE. Total carbon, organic carbon, and organic matter. Methods of soil analysis: Part 3 Chemical methods. 1996;5:961-1010.
https://doi.org/10.2136/sssabookser5.3.c34
PMid:29128246
 
 
39. Olsen S, Sommers L. Phosphorus.[In:] Page, AL et al.(Eds.), Methods of soil analysis: Part 2. Chemical and microbiological properties. Agronomy Monographs. Madison, WI., 403-430. 1982.
https://doi.org/10.2134/agronmonogr9.2.2ed.c24
PMCid:PMC4606764
 
 
40. Element C. Method 3051A microwave assisted acid digestion of sediments, sludges, soils, and oils. Z Für Anal Chem. 2007;111:362-6.
 
 
41. Lindsay WL, Norvell W. Development of a DTPA soil test for zinc, iron, manganese, and copper. Soil science society of America journal. 1978;42(3):421-8.
https://doi.org/10.2136/sssaj1978.03615995004200030009x
 
 
42. Smith K, Abrahams PW, Dagleish M, Steigmajer J. The intake of lead and associated metals by sheep grazing mining-contaminated floodplain pastures in mid-Wales, UK: I. Soil ingestion, soil-metal partitioning and potential availability to pasture herbage and livestock. Science of the Total Environment. 2009;407(12):3731-9.
https://doi.org/10.1016/j.scitotenv.2009.02.032
PMid:19327816
 
 
43. De Vries W, Römkens PF, Schütze G. Critical soil concentrations of cadmium, lead, and mercury in view of health effects on humans and animals. Reviews of environmental contamination and toxicology. 2007:91-130.
https://doi.org/10.1007/978-0-387-69163-3_4
PMid:17708073
 
 
44. Rodrigues S, Pereira M, Duarte A, Römkens P. Soil-plant-animal transfer models to improve soil protection guidelines: a case study from Portugal. Environment International. 2012;39(1):27-37.
https://doi.org/10.1016/j.envint.2011.09.005
PMid:22208740
 
 
45. Brand E, PFO L. an exposure model for human risk assessment of soil contamination A model description. The National Institute for Public Health and the Environment (RIVM), Dutch. 2007.
 
 
46. Portuguesa IBA. Portuguesa 1990-2003 [Relatório de informação à comunicação social]. Lisboa: Instituto Nacional de Estatística. 2006.
 
 
47. Poursattari R, Hadi H. Lead phytoremediation, distribution, and toxicity in rapeseed (Brassica napus L.): The role of single and combined use of plant growth regulators and chelators. Journal of Soil Science and Plant Nutrition. 2022;22(2):1700-17.
https://doi.org/10.1007/s42729-022-00765-4
 
 
48. Sharma P, Dubey RS. Lead toxicity in plants. Brazilian journal of plant physiology. 2005;17:35-52.
https://doi.org/10.1590/S1677-04202005000100004
 
 
49. Shahzad AS, Younis U, Naz N, Danish S, Syed A, Elgorban AM, et al. Acidified biochar improves lead tolerance and enhances morphological and biochemical attributes of mint in saline soil. Scientific Reports. 2023;13(1):8720.
https://doi.org/10.1038/s41598-023-36018-2
PMid:37253839 PMCid:PMC10229572
 
 
50. Garau M, Garau G, Diquattro S, Roggero PP, Castaldi P. Mobility, bioaccessibility and toxicity of potentially toxic elements in a contaminated soil treated with municipal solid waste compost. Ecotoxicology and Environmental Safety. 2019;186:109766.
https://doi.org/10.1016/j.ecoenv.2019.109766
PMid:31605957
 
 
51. Pál M, Janda T, Szalai G. Interactions between plant hormones and thiol-related heavy metal chelators. Plant Growth Regulation. 2018;85:173-85.
https://doi.org/10.1007/s10725-018-0391-7
 
 
52. Masu S, Dragomir N, Morariu F, Jurj L, Luminita N, Popescu D. The bioaccumulation of heavy metals in barley (Hordeum vulgare L) cultivated on a fly ash dump mixed with compost and natural zeolite materials. Scientific Papers: Animal Science and Biotechnologies. 2012;45(2):237.
 
 
53. Castaldi P, Silvetti M, Manzano R, Brundu G, Roggero PP, Garau G. Mutual effect of Phragmites australis, Arundo donax and immobilization agents on arsenic and trace metals phytostabilization in polluted soils. Geoderma. 2018;314:63-72.
https://doi.org/10.1016/j.geoderma.2017.10.040
 
 
54. Eissa MA, Ahmed EM. Nitrogen and phosphorus fertilization for some Atriplex plants grown on metal-contaminated soils. Soil and Sediment Contamination: An International Journal. 2016;25(4):431-42.
https://doi.org/10.1080/15320383.2016.1158693
 
 
55. Zulfiqar U, Farooq M, Hussain S, Maqsood M, Hussain M, Ishfaq M, et al. Lead toxicity in plants: Impacts and remediation. Journal of environmental management. 2019;250:109557.
https://doi.org/10.1016/j.jenvman.2019.109557
PMid:31545179
 
 
56. Beesley L, Marmiroli M, Pagano L, Pigoni V, Fellet G, Fresno T, et al. Biochar addition to an arsenic contaminated soil increases arsenic concentrations in the pore water but reduces uptake to tomato plants (Solanum lycopersicum L.). Science of the Total Environment. 2013;454:598-603.
https://doi.org/10.1016/j.scitotenv.2013.02.047
PMid:23583727
 
 
57. Medyńska-Juraszek A, Bednik M, Chohura P. Assessing the influence of compost and biochar amendments on the mobility and uptake of heavy metals by green leafy vegetables. International Journal of Environmental Research and Public Health. 2020;17(21):7861.
https://doi.org/10.3390/ijerph17217861
PMid:33121066 PMCid:PMC7662399
 
 
58. Gul I, Manzoor M, Hashim N, Yaqoob K, Kallerhoff J, Arshad M. Comparative effectiveness of organic and inorganic amendments on cadmium bioavailability and uptake by Pelargonium hortorum. Journal of Soils and Sediments. 2019;19:2346-56.
https://doi.org/10.1007/s11368-018-2202-1
 
 
59. Yan F, Zhu Y, Muller C, Zörb C, Schubert S. Adaptation of H+-pumping and plasma membrane H+ ATPase activity in proteoid roots of white lupin under phosphate deficiency. Plant physiology. 2002;129(1):50-63.
https://doi.org/10.1104/pp.010869
PMid:12011337 PMCid:PMC155870
 
 
60. Johnsen IV, Aaneby J. Soil intake in ruminants grazing on heavy-metal contaminated shooting ranges. Science of the total environment. 2019;687:41-9.
https://doi.org/10.1016/j.scitotenv.2019.06.086
PMid:31202012
 
 
61. McDowell LR. Minerals in animal and human nutrition: Academic Press Inc.; 1992.
 
 
62. Pescatore A, Grassi C, Rizzo AM, Orlandini S, Napoli M. Effects of biochar on berseem clover (Trifolium alexandrinum, L.) growth and heavy metal (Cd, Cr, Cu, Ni, Pb, and Zn) accumulation. Chemosphere. 2022;287:131986.
https://doi.org/10.1016/j.chemosphere.2021.131986
PMid:34481173
 
 
63. Khan S, Wang N, Reid BJ, Freddo A, Cai C. Reduced bioaccumulation of PAHs by Lactuca satuva L. grown in contaminated soil amended with sewage sludge and sewage sludge derived biochar. Environmental pollution. 2013;175:64-8.
https://doi.org/10.1016/j.envpol.2012.12.014
PMid:23337353