تعهد نامه

نوع مقاله : مقالات پژوهشی

نویسندگان

1 دانشگاه بوعلی سینا همدان

2 استاد گروه علوم خاک، دانشکده کشاورزی، دانشگاه بوعلی سینا، همدان، ایران

چکیده

زمینه و هدف: بررسی جایگاه­های خاک­سپاری پسماند­های شهری از دیدگاه توان آلایندگی زیستی آنها بسیار مهند است. پژوهش حاضر با هدف بررسی پایداری باکتری­ها در خاک­های آلوده در جایگاه خاک­سپاری پسماند­ها در همدان در برابر فلزهای سنگین انجام شد.
مواد و روش­ها: ویژگی­های فیزیکی و شیمیایی خاک­ها و همچنین اندازه کل فلزهایی مانند مس، سرب، روی و کادمیوم اندازه‌گیری شد. همچنین شناسه بارِ آلودگی (PLI)، میانگین شناسه آلودگی (PIavg) و درجه آلودگی (Cdeg) خاک این جایگاه­ها برآورد و بررسی گردید. با اندازه­گیری لگاریتم فراوانی ریزجانداران، درصد باکتری­های پایدار در برابر فلزهای مس، سرب، کادمیوم و روی در کشتگاه نوترینت آگار (NA) بررسی شد.
یافته ­ها: در میان جایگاه­ها، خاک پیرامون لاگون شیرابه بالاترین اندازه کربن آلی، فسفر و پتاسیم را داشت. شناسه­های PLI و PIavg برای خاک در جایگاه دست­نخورده کمتر از 1 بود. این شناسه­ها برای 5 جایگاه خاک­سپاری پسماند بیشتر از 1 و آلوده ارزیابی شدند. بالاترین لگاریتم فراوانی قارچ­ها، اکتینومیست­ها، سودوموناس­ها و انتروباکتر­ها به ‌ترتیب با اندازه 35/5، 28/5، 13/6 و 98/5 در خاکچال نوین پسماند شهری به‌دست آمد. درصد باکتری­های پایدار در برابر سرب در همه خاک­ها 100% ولی در شیرابه پسماندها کمتر بود (64%).
نتیجه‌گیری: رویهمرفته درصد باکتری­های پایدار به فلزهای مس، روی و کادمیوم در جایگاه خاک­سپاری پسماند نوین شهری بالاتر از جایگاه­های دیگر بود که می­تواند وابسته به خاک­سپاری پسماندهای شهری در خاک باشد.

کلیدواژه‌ها

عنوان مقاله [English]

Topsoil pollution and the tolerance of its bacteria to heavy metals in Hamadan municipal waste burial sites

نویسندگان [English]

  • Samira Abduolrahimi 1
  • Ali Akbar Safari Sinegani 2

1 University of Bu-Ali Sina Hamedan

2 Professor, Dept. of Soil Science, Faculty of Agriculture, University of Bu-Ali Sina Hamedan, Iran

چکیده [English]

Background and Purpose: The biological pollution of landfill sites for urban waste is a crucial concern. This study aims to investigate the resistance of bacteria in contaminated soils at waste burial sites against heavy metals in Hamadan.
Materials and methods: The physical and chemical characteristics of soils were examined, and the total amounts of metals such as copper, lead, zinc, and cadmium were measured. Additionally, pollution load index (PLI), average pollution index (PIavg), and pollution degree (Cdeg) were estimated and analyzed. Furthermore, the percentage of stable bacteria resistant to copper, lead, cadmium, and zinc in the NA culture medium was studied by measuring the logarithm of microorganism abundance
Results: Among the mentioned sites, the soil surrounding the leachate lagoon exhibited the highest levels of organic carbon, available phosphorus, and potassium. The PLI and PIavg indices for virgin soil were below one, indicating that this soil was not polluted. However, these indices were above one for the other five sites, indicating pollution. The intensity of soil pollution in these sites exceeded the permissible limit. The logarithm of population for fungi, actinomycetes, pseudomonas, and enterobacters was highest in the new rubbish landfill, with values of 5.35, 5.28, 6.13, and 5.98, respectively. The percentage of bacteria resistant to lead was 100% in all sampled soils, but in the leachate, it was lower than 64%.
Conclusion: Overall, the percentages of bacteria resistant to copper, zinc, and cadmium in the new rubbish landfill site were higher compared to other sites, which may be attributed to the landfilling of urban waste in the soil.

کلیدواژه‌ها [English]

  • Heavy metals
  • Microbial number
  • Pollution load index
  • Landfill
1. Kowsari M.H. Saghi M.H. Rastgar A. Sotude S. Investigation of Heavy Metals in the Soil around Municipal Waste Landfill. Journal of Sabzevar University of Medical Sciences. 2022; 29(1): 65-76.
2. Zyadah M. Abdel-Baky. T. Toxicity and bioaccumulation of copper, zinc, and cadmium in some aquatic organisms. Bulletin of Environmental Contamination and Toxicology. 2000; 64(5): 740-51.
3. Ware KD. Heavy metals and the petroleum industr. USA: DTIC Document. 1993; 239p.
4. Dabiri M. Environmental Pollution: Air, Water, Soil and Noise. 1th ed. Tehran: Ettehad. 2013; 399p. (Persian).
5. Altındag A. Yigit S. Assessment of heavy metal concentrations in the food webof lake Beysßehir, Turkey. Chemosphere. 2005; 60: 552–556.
6. Long Y-Y. Shen D-S. Wang H-T. Lu W-J. Zhao Y. Heavy metal source analysis in municipal solidwaste (MSW): Case study on Cu and Zn. Journal ofHazardous Materials. 2011; 186(2): 1082-87.
7. Niklinska M. Chodak M. Laskowski R. Pollution-induced community tolerance of microorganisms from forest soil organic layers polluted with Zn or Cu. Applied Soil Ecology. 2006; 32: 265-272.
8. Gong P. Siciliano S.D. Srivastava S. Greer C.W. Sunahara G.I. Assessment of pollution induced community tolerance to heavy metals in soils using ammonia-oxidizing bacteria and Biolog assay. Human and Ecological Risk Assessment. 2002; 8: 1067–1081.
9. Santas-Miguel V. Arias-Estevez M. Diaz-Ravina M. Fernandez-Sanjurjo M. J. Alvarez-Rodriguez E. Nunez-Delgado A. Fernsndez-Calvino D. Bacterial Community Tolerance to Tetracycline Antibiotics in Cu Polluted Soils. Agronomy, 2020; 1-11.
10. Fernandez-Calvino D. Arias-Estevez M. Díaz-Ravina M. Baath E. Bacterial pollution induced community tolerance (PICT) to Cu and interactions with pH in long-term polluted vineyard soils. Soil Biol. Biochem, 2011; 43: 2324e2331.
11. Boivin M. Y. Breure A. M. Posthuma L. Rutgers M. Determination of Field Effects of Contaminants - Significance of Pollution-Induced C Tolerance. Human and Ecological Risk Assessment. 2002; 5(8): 1035-1055. 
12. Diaz-Ravina M. and Baath E. Response of soil bacterial communities pre-exposed to different metals and reinoculated in an unpolluted soil. Soil Biol Biochem, 2001, 33:.241–248.
13. Pan J. Yu L. Effects of Cd or/and Pb on soil enzyme activities and microbial community structure. Ecol Eng, 2011, 37:1889–1894.
14. Chen J. He F. Zhang X. Sun X. Zheng J. Zheng J. Heavy metal pollution decreases microbial abundance, diversity and activity within particle-size fractions of a paddy soil. FEMS Microbiol Ecol, 2014, 87:164–181.
15. Chen L. Zhang W. Zhang R. Lin K. He L. Wu L. The bioavailability and adverse impacts of lead and decabromodiphenyl ether on soil microbial activities. Environ Sci Pollut Res, 2015, 22:12141–12149.
16. Frey B. Rieder SR. Response of forest soil bacterial communities to mercury chloride application. Soil Biol Biochem, 2013, 65:329–337.
17. Xian Y. Wang M. Chen W. Quantitative assessment on soil enzyme activities of heavy metal contaminated soils with various soil properties. 2015, Chemosphere, 139:604–608.
18. Shang W, Tang Q, Zheng L, Cheng H. Chemical forms of heavy metals in agricultural soils affected by coal mining in the Linhuan subsidence of Huaibei Coalfield, Anhui Province, China. Environmental Science and Pollution Research. 2016 Dec; 23:23683-93.
19. Xu Y. Seshadri B. Bolan N. Sarkar B. Ok YS. Zhang W. Rumpel C. Sparks D. Farrell M. Hall T. Dong Z. Microbial functional diversity and carbon use feedback in soils as affected by heavy metals. Environ Int. 2019. 125:478–488.
20. Jiang B. Adebayo A. Jia J. Xing Y. Deng S. Guo L. Liang Y. Zhang D. Impacts of heavy metals and soil properties at a Nigerian ewaste site on soil microbial community, 2019, 362: 187–195.
21. Diaz-Ravina M. Baath E. Frostegard A. Multiple heavy-metal tolerance of soil bacterial communities and its measurement by a thiamine incorporation technique. Applied and Environmental Microbiology. 1994. 60: 2238- 2247.
22. Wakelin S. Gerard E. Black A. Hamonts K. Condron L. Yuan T. Nostrand J. V. Zhou J. O’Callaghan M. Mechanisms of pollution induced community tolerance in a soil microbial community exposed to Cu. Environmental Pollution. 2014; 190: 1-9.
23. Milenkovski S. Baath E. Lindgren P. E. Berglund O. Toxicity of fungicides to natural bacterial communities in wetland water and sediment measured using leucine incorporation and potential denitrification. Ecotoxicology. 2010; 19: 285–294. 
24. Lopez-Penalver J.J. Pacheco C.V.G. Sanchez-Polo M. Utrilla J.R. Degradation of tetracyclines in different water matrices by advanced oxidation/reduction processes based on gamma radiation. Journal of Chemical Technology & Biotechnology. 2012; 88: 1096–1108.
25. Khanlari GH. Taleb Bidokhti A.R. Momeni A.A. Ahmadi H.R. The effect of leachate of Hamedan landfill site on ground water. Journal of Geological Engineering. 2012. 5(3-4):92-81.
26. Gee G.W. Or D. Particle size analysis. In: Dane, J. H. and Topp, G. C. (eds.), Methods of soil analysis. Agronomy Monograph. American Statistical Association and Soil Science Society of America, Madison. 2002; 9: 255-293.
27. Spark D. Methods of Soil Analysis Part 3: Chemical Methods. Soil Science Society of America, American Society of Agronomy, Madison. 1996; 5:1424p.
28. Walkley A. Black A.I. Examination of the degtjareff method for determining soil organic matter and a proposed modification of the chromic and titration method. Soil Science. 1934; 34: 29–38.
29. Rolins M.B. Pool D.L. Measurement of exchangeable cations in bentonites”, Journal clays and clay minerals, 1968; 16: 165-172.
30. Olsen S. R. Cole C. V. Watanabe F. S. Dean L. A. Estimation of available phosphorus in soils by extraction with NaHCO3. 1954; USDA Cir. U.S. Washington. 19p.
31. Ali-Ahyai M. and Behbahani Zadeh A.A. Methods of Soil Analysis Descriptions. Soil and Water Research
Institute. Technical Paper, 1993, No. 893. Tehran.
32. Chen M. Lena Q.M. Comparison of three aqua regia digestion methods for twenty florida soils. Journal of soil science society. 2001; 65: 491-499.
33. Varol M. Assessment of heavy metal contamination in sediments of the Tigris River (Turkey) using pollution indices and multivariate statistical techniques. Journal of Hazardous Materials. 2011; 195: 355–364.
34. Bhuiyan M. A. Parvez H. L. Islam M. A. Dampare S. B. Suzukia S. Heavy metal pollution of coal mine-affected agricultural soils in the northern part of Bangladesh. Journal of Hazardous Materials. 2010; 173: 384-392.
35. Inengite A. K. Abasi C. Y. Walter C. Application of pollution indices for the assessment of heavy metal pollution in flood impacted soil. International Research Journal of Pure and Applied Chemistry. 2015; 8: 175–189.
36. Gong Q. Deng J. Xiang Y. Wang Q. Yang L. Calculating pollution indices by heavy metals in ecological geochemistry assessment and a case study in parks of Beijing. Journal of China University of Geosciences. 2008; 19: 230–241.
37. Reimann C. Garret R. G. Geochemical background: Concept and reality. Science of the Total Environment. 2005; 350: 12–27.
38. Hakanson L. An ecological risk index for aquatic.Pollution control: A sedimentological approach. Water Research. 1980; 14: 975–1001.
39. Safari Sinegani. A. A. Sharifi Z. Safari Sinegani M. Methods in applied microbiology. Bu-Ali Sina University Publications; 1389. 525P (Persian).
40. Malik A. and Ahmad M. Incidence of drug and metal resistance in E. coli strains from sewage water and soil. Chem. Environ, 1994, 3:3-11.
41. Bartkowiak A. Lemanowicz J. Breza‑Boruta B. Zielinski A. Assessment of the Effect of Uncontrolled Landfill Sites on the Contentof Available Forms of Selected Macro and Microelements in Forest Soil. International Journal of Environmental Research. 2018; 12: 901–907.
42. Mukhopadhyay S. Chakraborty S. Bhadoria P. Li B. Weindorf DC. Assessment of heavy metal and soil organic carbon by portable X-ray fluorescence spectrometry and NixPro™ sensor in landfill soils of India. Geoderma Regional. 2020; 20: e 00249 .
43. Alam R. Ahmed Z. Howladar M. F. Evaluation of heavy metal contamination in water, soil and plant around the open landfill site Mogla Bazar in Sylhet, Bangladesh. Groundwater for Sustainable Development. 2020; 10: 100311.
44. Lam CH. Ip AW. Barford JP. McKay G. Use ofincineration MSW ash: a review. Sustainability. 2010; 2(7): 1943-68.
45. Ibitoye A. Ipinmoroti K. Amoo I. Effect of mu-nicipal refuse dump on the physic-chemical prop-erties of soil and water. Nigerian Journal of Soil Sci-ence. 2005; 15(2): 122-28.
46. Slack R. Gronow J. Voulvoulis N. Householdhazardous waste in municipal landfills: contami-nants in leachate. Science of the Total Environment. 2005; 337(1): 119-27.
47. Zhao L. Zhang F-S. Wang K. Zhu J. Chemicalproperties of heavy metals in typical hospital wasteincinerator ashes in China. Waste Management. 2009; 29(3): 1114-21.
48. Kuo H-W. Shu S-L. Wu C-C. Lai J-S. Characteris-tics of medical waste in Taiwan. Water, Air, and Soil Pollution. 1999; 114(3-4): 413-21.
49. Xiaoli C. Shimaoka T. Xianyan C. Qiang G. You-cai Z. Characteristics and mobility of heavy metalsin an MSW landfill: Implications in risk assessmentand reclamation. Journal of Hazardous Materials. 2007; 144(1): 485-91.
50. Safari Sinegani A. A. Soil biology and biochemistry. Bu-Ali Sina University Publications. 1394; 586P (Persian).
51. Flores-Tena F. J. Guerrero-Barrera A. Avelar-gonzalez F. J. Ramirez-Lopez E. Martinez-Saldana M. C. Pathogenic and opportunistic gram-negative bacteria in soil, leachate and air in San Nicolás landfill at Aguascalientes, Mexico. Rev Latinoam Microbiol. 2007; 49(1-2): 25-30. 
52. Long Y-Y. Shen D-S. Wang H-T. Lu W-J. Zhao Y. Heavy metal source analysis in municipal solid waste (MSW): Case study on Cu and Zn. Journal of Hazardous Materials. 2011; 186(2): 1082-87.
53. Diaz-Raviiia M. Baath E. Development of metal tolerance in soil bacterial communities exposed to experimentally increased metal levels. Applied and Environmental Microbiology. 1996; 29 (62): 70- 7. 
54. Fernandez-Calvino D. Baath E. Co-selection for antibiotic tolerance in Cupolluted soil is detected at higher Cu-concentrations than Cu-tolerance. Soil Biology and Biochemistry. 2013; 57: 953- 956.
55. Witter E. Gong P. Baath E. Marstrop H. A stady of the structure and metal tolerance of the soil microbial community six years after cessation of sewage sludge application. Environmental Toxicology and Chemistry. 2000; 19: 1983- 1991.
56. Van Beelen P. Wouterse M. Posthuma L. Rutgers M. Location-specific ecotoxicological risk assessment of metal polluted-soils. Environmental Toxicology and Chemistry. 2004; 11: 2769–2779.