تعهد نامه

نوع مقاله : مقالات پژوهشى اصیل کمی و کیفی

نویسندگان

1 استادیار میکروبیولوژی، گروه میکرو بیولوژی، دانشکده علوم پایه، دانشگاه آزاد اسلامی واحد مراغه، مراغه، ایران

2 دپارتمان بیوتکنولوژی و میکروبیولوژی مرکز تحقیقات واموزش کشاورزی و منابع طبیعی استان آذربایجان شرقی، بخش تحقیقات بیماریهای باکتریایی

3 گروه زیست فناوری، شرکت ریز زیست فناوران فردا نگر، پارک علم و فناوری یزد، ایران.

چکیده

زمینه و هدف: با توجه به نقش آلودگی‌های هیدروکربنی در ابتلاء به سرطان، پژوهش حاضر با هدف بررسی میزان تجزیه بنزن و تولوئن با استفاده از باکتری­های استخراج شده از خاک و بررسی ترکیبات حاصل از این تجزیه انجام شد.
مواد و روش‌ها: 30 نمونه خاک شامل خاک کشاورزی و خاک آلوده به هیدروکربن‌ها از استان‌های شمال‌غرب ایران تهیه گردید. باکتری‌ها در محیط کشت آگار کشت داده شده و استخراج گردیدند. به‌منظور بررسی تجزیه بنزن و تولوئن، باکتری­ها در محیط کشت معدنی (به‌صورت جدا) که در آنها مقدار مشخصی بنزن و تولوئن (به‌صورت جدا)، کشت داده شد، درصد تجزیه مشخص گردید. در پایان با استفاده از کروماتوگرافی گازی ترکیبات حاصل از تجزیه بنزن و تولوئن شناسایی و با استفاده از روش‌های بیوشیمیایی و PCR، نوع باکتری تجزیه کننده بنزن و تولوئن، تعیین شد.
یافته ها: تجزیه بنزن و تولوئن توسط همه باکتری­های استخراج شده انجام گرفت، اما بیشترین آن توسط باکتری­های خاک پالایشگاه به‌ترتیب برای بنزن (85/%55) و تولوئن (39/%49) بود. همچنین تجزیه بنزن نسبت به تولوئن توسط باکتری­های خاک کشاورزی و پالایشگاه بیشتر بود. اکثر ترکیبات حاصل از تجزیه، نسبت به بنزن و تولوئن، از سمّیت پایین‌تری برخوردار بود. همچنین حضور سویه استرپتومایسس در محیط‌هایی با بیشترین تجزیه بنزن و تولوئن تأیید گردید.
نتیجه‌گیری: استرپتومایسس بومی خاک‌های آلوده به هیدروکربن‌ها، می‌توانند با کارایی بالا، بنزن و تولوئن را به ترکیبات آلی، با خطر کمتر تبدیل نمایند.

کلیدواژه‌ها

عنوان مقاله [English]

Biodegradation of benzene and toluene using indigenous bacteria extracted from the soil of northwest Iran

نویسندگان [English]

  • Lida Eftekhari Vash 1
  • Ali Reza Dehnad 2
  • Mohammad Majdizadeh 3

1 Assistant Professor of Microbiology, Department of Microbiology, Faculty of Basic Sciences, Maragheh Branch,Islamic, Azad university, Maragheh, Iran

2 Microbiology and Biotechnology Department, East Azerbaijan Research and Education Center Agricultural and Natural Resources Department of Bacterial Diseases Research, Razi Vaccine and Serum Research Institute , AREEO, Tabriz- Iran.

3 Nano-Biotech Foresight Company Biotechnology Campus, Science & Technology Park of Yazd, Yazd, Iran.

چکیده [English]

Background and Purpose: Considering the role of hydrocarbon pollution in cancer, this research aims to investigate the degradation rate of benzene and toluene using bacteria extracted from soil, as well as to examine the compounds resulting from this decomposition.
Materials and Methods: Thirty soil samples, including agricultural soil and soil contaminated with hydrocarbons, were collected from the northwestern provinces of Iran. Bacteria were cultured in agar medium and subsequently extracted. To assess the decomposition of benzene and toluene, bacteria were separately cultured in a mineral culture medium containing a specific amount of benzene or toluene, and the percentage of decomposition was determined. Additionally, GC-Mass analysis was conducted to identify the compounds resulting from the decomposition of benzene and toluene. The type of bacteria responsible for the degradation was determined using biochemical methods and PCR
Results: All the extracted bacteria exhibited the ability to decompose benzene and toluene, with the highest decomposition rates observed in bacteria extracted from refinery soil, averaging 55.85% for benzene and 49.39% for toluene. Agricultural and refinery soil bacteria displayed a higher decomposition rate for benzene compared to toluene. The majority of the compounds obtained from the decomposition had lower toxicity than benzene and toluene. Furthermore, the presence of the Streptomyces strain was confirmed in environments with the highest decomposition rates for benzene and toluene.
Conclusion: Streptomyces strains indigenous to soils contaminated with hydrocarbons demonstrated a high efficiency in converting benzene and toluene into organic compounds, reducing the associated risks.

کلیدواژه‌ها [English]

  • Benzene
  • Toluene
  • Carcinogenic compounds
  • Biodegradation
  • Streptomyces
 
1-Ghorbannezhad H, Moghimi H, Dastgheib MM. Enhanced Biodegradation of Heavy Hydrocarbons by Aspergillus Pseudodeflectus F13 in the Presence of Rhamnolipid. Petroleum Research. 2020; 21;30(99-2):61-75. (Persian)
 https://dx.doi.org/10.22078/pr.2020.3222.2490
2-Soleymani S, Lakzian A, Fottovat A. Benz (a)pyrene Biodegradation Improvement Using the Biosurfactant Producing Bacterial Consortium. Journal of Water and Soil. 2019;33(4):605-619. (Persian) https://dx.doi.org/10.22067/jsw.v0i0.79076
3-Rezaei H, Motallebi R, Hedayati SAA, Kord-Rostami A. Evaluation of nano chitosan efficiency in removal of benzene from aqueous solutions. Journal of Water and Soil Conversation. 2019;26(4):255-267. (in Persian) 
https://dx.doi.org/10.22069/jwsc.2019.16203.3150
4-Rahmatabadi S, Roayaei Ardakani M, Moradzadegan A, Alizadeh B. Isolation and identification α-Naphthol-degrading bacteria from oil-contaminated soils of Masjed-e-Soleyman. Biological Journal of Microorganism. 2018;7(25):75-85. https://dx.doi.org/10.22108/bjm.2018.21707
5-Famiyeh L, Chen K, Xu J, Sun Y, Guo Q, Wang C, Lv J, Tang YT, Yu H, Snape C, He J. A review on analysis methods, source identification, and cancer risk evaluation of atmospheric polycyclic aromatic hydrocarbons. Science of The Total Environment. 2021 Oct 1;789:147741. https://doi.org/10.1016/j.scitotenv.2021.147741
6-Saad AA, El-Sikaily AM, El-Badawi ES, El-Sawaf GA, Shaheen NE, Omar MM, Zakaria MA. Relation between some environmental pollutants and recurrent spontaneous abortion. Arabian Journal of Chemistry. 2016. 1;9:S787-94. 
https://doi.org/10.1016/j.arabjc.2011.08.011
7-Fooladi M, Moogouei R, Jozi SA, Golbabaei F, Tajadod G. Feasibility study of benzene and toluene removal from air by phytoremediation. Journal of Health and Safety at Work. 2021;11(3):433-44. (Persian) http://jhsw.tums.ac.ir/article-1-6537-en.html
8-Fernanda Bonfim de Souza B, Lenhare S, Cristaldo Heck S, Zuber A, Beneti SC, Zanette AF, Filho LC. COSMO Study on the Heptane–Toluene–DMF/DEG-KSCN Liquid–Liquid Equilibrium System. Industrial & Engineering Chemistry Research. 2021. https://doi.org/10.1021/acs.iecr.1c02495
9-Kim S, Park E, Song SH, Lee CW, Kwon JT, Park EY, Kim B. Toluene concentrations in the blood and risk of thyroid cancer among residents living near national industrial complexes in South Korea: A population-based cohort study. Environment International. 2021;146:106304. https://doi.org/10.1016/j.envint.2020.106304
10-Svenson DW, Davidson CJ, Thakur C, Bowen SE. Acute exposure to abuse‐like concentrations of toluene induces inflammation in mouse lungs and brain. Journal of Applied Toxicology. 2022; 6;8(2):477-480. 10.36347/sjams.2020. v08i02.024
11-Soltanpour Z, Mohammadian Y, Fakhri Y. The concentration of benzene, toluene, ethylbenzene, and xylene in ambient air of the gas stations in Iran: A systematic review and probabilistic health risk assessment. Toxicology and industrial health. 2021;37(3):134-41. https://doi.org/10.1177%2F0748233720981218 
12-Ran J, Qiu H, Sun S, Tian L. Short-term effects of ambient benzene and TEX (toluene, ethylbenzene, and xylene combined) on cardiorespiratory mortality in Hong Kong. Environment international. 2018;1; 117:91-8.
 https://doi.org/10.1016/j.envint.2018.04.049
13-Huang L, Cheng H, Ma S, He R, Gong J, Li G, An T. The exposures and health effects of benzene, toluene and naphthalene for Chinese chefs in multiple cooking styles of kitchens. Environment International. 2021; 156:106721.
 https://doi.org/10.1016/j.envint.2021.106721 
14-Moawad RS, Abd El Fattah ER, Alsemeh AE. Deleterious effect of Toluene on Rat cerebrum cortex and The exert effect of resveratrol:(Histological, Immunohistochemical and Ultrastructural study). Egyptian Journal of Histology. 2021;44(3):855-72. https://dx.doi.org/10.21608/ejh.2021.71825.1459 
15-Guo H, Ahn S, Zhang L. Benzene-associated immunosuppression and chronic inflammation in humans: a systematic review. Occupational and Environmental Medicine. 2021;78(5):377-84. http://dx.doi.org/10.1136/oemed-2020-106517 
16-Negahban S A  R, Ghorbani Shahna F, Rahimpoor R, Jalali M, Rahiminejad S, Soltanian A et al. Evaluating Occupational Exposure to Carcinogenic Volatile Organic Compounds in an Oil-Dependent Chemical Industry: a Case Study on Benzen and Epichlorohydrin. johe. 2014; 1 (1) :36-46 http://johe.umsha.ac.ir/article-1-25-fa.html 
17-Zhou Y, Wang K, Wang B, Pu Y, Zhang J. Occupational benzene exposure and the risk of genetic damage: a systematic review and meta-analysis. BMC public health. 2020 ;20(1):1-1. https://doi.org/10.1186/s12889-020-09215-1
18-Talibov M, Sormunen J, Hansen J, Kjaerheim K, Martinsen JI, Sparen P, Tryggvadottir L, Weiderpass E, Pukkala E. Benzene exposure at workplace and risk of colorectal cancer in four Nordic countries. Cancer epidemiology. 2018; 55:156-61. https://doi.org/10.1016/j.canep.2018.06.011
19-Dewi R, Hamid ZA, Rajab NF, Shuib S, Razak SA. Genetic, epigenetic, and lineage-directed mechanisms in benzene-induced malignancies and hematotoxicity targeting hematopoietic stem cells niche. Human & experimental toxicology. 2020 ;39(5):577-95. https://doi.org/10.1177%2F0960327119895570 
20-McHale CM, Zhang L, Smith MT. Current understanding of the mechanism of benzene-induced leukemia in humans: implications for risk assessment. Carcinogenesis. 2012;33(2):240-52. https://doi.org/10.1093/carcin/bgr297 
21-Grigoryan H, Edmands WM, Lan Q, Carlsson H, Vermeulen R, Zhang L, Yin SN, Li GL, Smith MT, Rothman N, Rappaport SM. Adductomic signatures of benzene exposure provide insights into cancer induction. Carcinogenesis. 2018 ;39(5):661-8. https://doi.org/10.1093/carcin/bgy042
22-Mohseni M, Pourseyed SF, Chaichi MJ. Bioassay detection of some benzene derivatives using luminescent bacterium Vibrio sp. MM1 isolated from the Caspian Sea. Cellular and Molecular Research(Iranian Journal of Biology). 2020 ;33(4):526-535 https://dorl.net/dor/20.1001.1.23832738.1399.33.4.12.8 
23-Armstrong B, Hutchinson E, Unwin J, Fletcher T. Lung cancer risk after exposure to polycyclic aromatic hydrocarbons: a review and meta-analysis. Environmental health perspectives. 2004;112(9):970-8. https://doi.org/10.1289/ehp.6895 
24-Nishiwaki J, Kawabe Y, Komai T, Zhang M. Decomposition of gasoline hydrocarbons by natural microorganisms in Japanese soils. Geosciences. 2018 ;8(2):35.https://doi.org/10.3390/geosciences8020035 
 
25-Sasani M, Khoramnejadian S, Safari R. Degradation of polycyclic hydrocarbones anthracene by using Pseudomonas aeruginusa. J Gorgan Univ Med Sci. 2017; 19 (2) :65-71 http://goums.ac.ir/journal/article-1-3079-fa.html 
26-Ahmed F, Fakhruddin AN. A review on environmental contamination of petroleum hydrocarbons and its biodegradation. International Journal of Environmental Sciences & Natural Resources. 2018;11(3):1-7. 
http://dx.doi.org/10.19080/IJESNR.2018.11.555811 
27-Obi L, Atagana H, Adeleke R, Maila M, Bamuza‐Pemu E. Potential microbial drivers of biodegradation of polycyclic aromatic hydrocarbons in crude oil sludge using a composting technique. Journal of Chemical Technology & Biotechnology. 2020 ;95(5):1569-79. https://doi.org/10.1002/jctb.6352 
28-Gagelidze NA, Amiranashvili LL, Sadunishvili TA, Kvesitadze GI, Urushadze TF, Kvrivishvili TO. Bacterial composition of different types of soils of Georgia. Annals of Agrarian Science. 2018;16(1):17-21. https://doi.org/10.1016/j.aasci.2017.08.006 
29-Rasuli S, Kashefi Alasl M, Marandi R, Emtiazjou M, Zaeimdar M. Identification of Native Bacteria of Soil Contaminated with Oil Compounds in Mahshahr Petrochemical Special Economic Zone. Journal of Environmental Science and Technology. 2020; 21;22(3):277-86. 10.22034/JEST.2020.35538.4246 
30-Smułek W, Sydow M, Zabielska-Matejuk J, Kaczorek E. Bacteria involved in biodegradation of creosote PAH–A case study of long-term contaminated industrial area. Ecotoxicology and Environmental Safety. 2020; 15;187:109843. https://doi.org/10.1016/j.ecoenv.2019.109843
31-Chang TH, Wang R, Peng YH, Chou TH, Li YJ, Shih YH. Biodegradation of hexabromocyclododecane by Rhodopseudomonas palustris YSC3 strain: A free-living nitrogen-fixing bacterium isolated in Taiwan. Chemosphere. 2020 ;246:125621. https://doi.org/10.1016/j.chemosphere.2019.125621
32-Chuah LF, Chew KW, Bokhari A, Mubashir M, Show PL. Biodegradation of crude oil in seawater by using a consortium of symbiotic bacteria. Environmental Research. 2022;213:113721. https://doi.org/10.1016/j.envres.2022.113721
33-Sadighbayan K, Farazmand A, Mazaheri-asadi M, Monadi Sefidan A, Aliasgharzad N. A Comparative Study on Four Strains of Petroleum Hydrocarbon-degrading Bacteria for the Bioremediation of Petroleum-contaminated Soils. Biological Journal of Microorganism. 2021;10(37):51-65. https://bjm.ui.ac.ir/article_24801.html 
34-Goodfellow M, Williams ST, Mordarski M. Actinomycetes in Biotechnology. Ed1. USA: Academic Press; 1998; 568-76. https://doi.org/10.1016/C2009-0-02828-1
35-Dehnad AR, Bakhshi R, Monadi-Sefidan AR, Montazem SH, Abdi-Soufiani S. Screening of Streptomyces bacteria with antibacterial activity from soils of Azerbaijan region of Iran. Biotechnology of Microorganisms Journal. 2009; 1(1):18-22(Persian)
36-Saputra R, Arwiyanto T, Wibowo A. Streptomyces sp.: Characterization, Identification and Its Potential as a Ralstonia solanacearum Biological Control Agent in vitro. Indonesian Journal of Agricultural Research. 2019 ;2(3):148-55. https://doi.org/10.32734/injar.v2i3.1389 
37-Dehnad A, Esmaili E, Solouki M. Isolation and molecular identification chitinase-producing Streptomyces strains and examination of their in-vitro antagonistic effects. Biological Journal of Microorganism. 2015 ;4(15):123-34.(Persian)
38-Fenglei H, Mengyu L, Huangrong Z, Ting L, Dandan L, Shuo Z, Wenwen G, Fang L. Product analysis and mechanism of toluene degradation by low temperature plasma with single dielectric barrier discharge. Journal of Saudi Chemical Society. 2020 ;24(9):673-82. https://doi.org/10.1016/j.jscs.2020.07.004 
39-PubChem [Internet]. Bethesda (MD): National Library of Medicine (US), National Center for Biotechnology Information; 2004-. PubChem Compound Summary for CID 8078, Cyclohexane; [cited 2022 May 13].
 https://pubchem.ncbi.nlm.nih.gov/compound/Cyclohexane
40-PubChem [Internet]. Bethesda (MD): National Library of Medicine (US), National Center for Biotechnology Information; 2004-. PubChem Compound Summary for CID 15600, Decane; [cited 2022 May 13]. https://pubchem.ncbi.nlm.nih.gov/compound/Decane
41-Neghab M, Tayepheh-Rahimian J, Jahangiri M, Karimi A, Nasiri Gh, Aghabeigi M, Hasanzadeh J, Dasht S, Safaeiyan A. Evaluation of hematotoxic potential of benzene, toluene, xylene, ethyl benzene and n-hexane in petrochemical industries. Irtiqa Imini Pishgiri Masdumiyat. journal of safety promotion and injury prevention. 2015;2(4):293-302 https://doi.org/10.22037/meipm.v2i4.8396 
42-Rintala H, Nevalainen A, Rönkä E, Suutari M. PCR primers targeting the 16S rRNA gene for the specific detection of streptomycetes. Molecular and cellular probes. 2001 1;15(6):337-47. https://doi.org/10.1006/mcpr.2001.0379 
43-Ian E, Malko DB, Sekurova ON, Bredholt H, Rückert C, Borisova ME, Albersmeier A, Kalinowski J, Gelfand MS, Zotchev SB. Genomics of sponge-associated Streptomyces spp. closely related to Streptomyces albus J1074: insights into marine adaptation and secondary metabolite biosynthesis potential. PLoS One. 2014:12;9(5):e96719. https://doi.org/10.1371/journal.pone.0096719
44-Khadayat K, Sherpa DD, Malla KP, Shrestha S, Rana N, Marasini BP, Khanal S, Rayamajhee B, Bhattarai BR, Parajuli N. Molecular identification and antimicrobial potential of Streptomyces species from Nepalese soil. International journal of microbiology. 2020; 27;2020. https://doi.org/10.1155/2020/8817467 
45-Nawan, Septi. Handayani. Molecular identification of Streptomyces sp. isolated from peat land of Palangka Raya, Kalimantan Tengah using 16S rRNA gene sequences analysis. Research Journal of Pharmacy and Technology. 2021; 14(12):6639-4. https://doi.org/10.52711/0974-360X.2021.01147
46-Asgharzadeh MR, Manda N. Antibacterial activity of metabolites isolated from Streptomyces SSp. On Soil Sample of West Azerbaijan, Iran. International Journal of Advanced Biological and Biomedical Research. 2021;9(2):147-59. 
https://dx.doi.org/10.22034/ijabbr.2021.241642
47-Baoune H, El Hadj-Khelil AO, Pucci G, Sineli P, Loucif L, Polti MA. Petroleum degradation by endophytic Streptomyces spp. isolated from plants grown in contaminated soil of southern Algeria. Ecotoxicology and environmental safety. 2018 ;147:602-9. https://doi.org/10.1016/j.ecoenv.2017.09.013 
48-Baoune H, Aparicio JD, Pucci G, Ould El Hadj-Khelil A, Polti MA. Bioremediation of petroleum-contaminated soils using Streptomyces sp. Hlh1. Journal of Soils and Sediments. 2019 ;19(5):2222-30. https://doi.org/10.1007/s11368-019-02259-w 
49-Alsebri H, Hamad AA, Hassam MM. Biodegradation of petroleum hydrocarbons using indigenious bacterial and actinomycetes cultures. Pakistan Journal of Biological Sciences. 2020;23(6):726-34. https://dx.doi.org/10.3923/pjbs.2020.726.734
50-Farzi A, Shirzad N, Dehnad AR. Biodegradation of Benzene and Toluene by Streptomyces species isolated from the soil of Tabriz Refinery, Eastern-Azerbaijan and investigation of the kinetic model. Journal of Civil and Environmental Engineering. 2021;1(1):12-22. (Persian) https://dx.doi.org/10.22034/jcee.2021.27873.1675 
51-Soumeya S, Allaoueddine B, Hocine AK. Biodegradation of used motor oil by Streptomyces ginkgonis KM-1–2, isolated from soil polluted by waste oils in the region of Azzaba (Skikda-Algeria). Journal of Biotechnology. 2022: 10;349:1-1. https://doi.org/10.1016/j.jbiotec.2022.03.006