تعهد نامه

نوع مقاله : مقالات پژوهشی

نویسندگان

1 گروه مهندسی محیط زیست ، واحد اهواز، دانشگاه آزاد اسلامی، اهواز، ایران

2 گروه مهندسی محیط‌زیست، دانشکده محیط‌زیست، پردیس دانشکده‌های فنی، دانشگاه تهران، تهران، ایران

3 گروه مدیریت محیط‌زیست-HSE، واحد اهواز، دانشگاه آزاد اسلامی، اهواز، ایران

4 گروه مهندسی محیط‌زیست ، واحد اهواز، دانشگاه آزاد اسلامی، اهواز، ایران

چکیده

زمینه و هدف: تصمیم‌گیری صحیح در مدیریت آلودگی هوا نیازمند داشتن برآوردی درست از وضعیت کیفیت هوا و شرایط هواشناسی است. لذا بررسی داده‌های ایستگاه‌های پایش، یک بخش اجتناب‌ناپذیر در مطالعات آلودگی هوا است. برای این منظور، همگنی داده‌های ایستگاه‌های هواشناسی و کیفیت هوا شهرستان ماهشهر، با استفاده از آزمون‌های آماری مورد ارزیابی قرارگرفته است.
مواد و روش‌ها: در ابتدا ده سال داده‌های ایستگاه‌های هواشناسی و داده‌های سال‌های 2016 الی 2019 کیفیت هوا شهرستان ماهشهر جمع‌آوری گردید. سپس میزان بیشینه و کمینه، انحراف معیار، واریانس، چولگی و کشیدگی برای تمامی پارامترها محاسبه و با استفاده از آزمون‌های آماری ناهمگنی‌ها و نوسانات نامحتمل داده‌ها مورد ارزیابی قرار گرفت.
یافته‌ها: بررسی نتایج نشان داد که به‌طور متوسط 12% از کل داده‌ها در ایستگاه هواشناسی منطقه ویژه نامعتبر بوده و داده‌ها این ایستگاه نرمال نیستند. همچنین پارامترهای هواشناسی فرودگاه ماهشهر بیش از 98% داده معتبر داشته و توزیع داده‌ها در این ایستگاه نرمال بوده است. از بررسی آماری داده‌های غلظت آلودگی در ایستگاه‌های کیفیت هوا، می‌توان بیان نمود که از 21 آلاینده مورد بررسی در 4 ایستگاه کیفیت هوا موجود در منطقه، تنها آلاینده‌های PM2.5 در ایستگاه ماهشهر، NO2 در ایستگاه سیار منطقه ویژه و CO ، O3 در ایستگاه منطقه ویژه از داده‌های نرمالی برخوردار بوده است.
نتیجه‌گیری: درنتیجه ایستگاه ثابت کیفیت هوای منطقه ویژه و ایستگاه هواشناسی شهر ماهشهر به ترتیب با متوسط 4/16% و0/48% داده نامعتبر، اعتبار بیشتری نسبت به سایر ایستگاه‌ها موجود در منطقه برخوردار بوده‌اند. در آخر پیشنهاد می‌گردد داده‌های سایر ایستگاه‌ها جهت استفاده در بازه زمانی موردنیاز می‌بایست به توزیع نرمال نزدیک گردند.

کلیدواژه‌ها

عنوان مقاله [English]

A feasibility study of using Mahshahr city’s meteorological and air quality data to evaluate air pollution

نویسندگان [English]

  • Mahdi Ale Ahmad 1
  • Abdolreza Karbasi 2
  • Amir Hossein Davami 3
  • Reza Jalilzadeh Yengejeh 4

1 Department of Environmental Engineering, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran

2 School of Environment, College of Engineering, University of Tehran, Tehran, Iran

3 Department of Environmental Management-HSE, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran

4 Department of Environmental Engineering, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran

چکیده [English]

Background and purpose: An accurate estimation of air quality and meteorological conditions is required to make the sound air pollution management decisions. Thus, the data analysis from monitoring stations is unavoidable in air pollution research.  The present study uses the statistical tests to survey the homogeneity of meteorological factors and air quality station data in Mahshahr.
Materials and methods: At first, a decade's worth of meteorological station data and the data from air quality stations in Mahshahr were collected over 2016-2019. The minimum and maximum values, standard deviation, variance, skewness, and kurtosis of parameters were then calculated, and heterogeneities and improbable fluctuations in the data were examined.
Results: The results indicated that an average of 12% of data from the meteorological station in the special region were invalid, and that the data from this station had a non-normal distribution. Moreover, 98% of meteorological data collected at Mahshahr airport were valid which had a normal distribution. Statistical analysis of pollutant concentration data from air quality stations revealed that among 21 pollutants monitored across four air quality stations in the study region, only PM2.5 in Mahshahr station, NO2 in the mobile station, and CO, O3 in the special region fix station yielded normal distributed data.
Conclusion: Consequently, when compared to other regional stations, the data from special zone's fixed air quality station, and Mahshahr meteorological station were the most reliable, with an average invalid data percentage of 16.4 and 0.48, respectively. Finally, it is recommended that the data should be adjusted to a more normal distribution over the desired period before using the data from other stations.

کلیدواژه‌ها [English]

  • air pollution
  • Air Quality station
  • Mahshahr City
  • Meteorological Station
1.Mohammadi B, Biazar S M. Survey data validation meteorological stations Sanandaj. Proceedings of the 4th International Congress of Environmental Planning and Management. 2017 Oct. 23-24, Tehran, Iran. University of Tehran. (Persian)
2.The World Bank Sustainable Development Network Office of the Chief Economist. A cost effective solution to reduce disaster losses in developing countries Hydrometeorological Services, Early Warning, and Evacuation. France: Hallegatte; May 2012.
3.World Meteorological Organization (WMO). Climate information for disaster risk reduction, Disaster risk reduction program. Communications and public affairs office, WMO Fact Sheets; 2017.
4.Bell S, Cornford D, Bastin L. The state of automated amateur weather observations. Weather. 2013; 68(2): 36–41.
5.Muller CL, Chapman L, Johnston S, et al. Crowdsourcing for climate and atmospheric sciences: current status and future potential. International Journal of Climatology. 2015; 35(11): 3185–3203.
6.De Vos L,Droste A,Zander M, et al. Hydrometeorological monitoring using opportunistic sensing networks in the Amsterdam metropolitan area. Bulletin of the American Meteorological Society. 2020; 101(2): E167–E185.
7.Domonkos P. Homogenization of precipitation time series with ACMANT. Theoretical and Applied Climatology. 2014; 122(1-2): 303–314
8.Marcolini G, Bellin A, Chiogna G. Performance of the Standard Normal Homogeneity Test for the homogenization of mean seasonal snow depth time series. International Journal of Climatology. 2017; 37: 1267–1277.
9.Bazgeer S, Abbasi F, Asadi Oskoue E, et al. Assessing the Homogeneity of Temperature and Precipitation Data in Iran with Climatic Approach. jsaeh. 2019; 6 (1) :51-70. (Persian)
10.Baharvandi K, Khorshid Doost A, Nesaji Zavareh M. Detection of climate fluctuations using standard normal homogeneity test method (Case study: Khorramabad station). Geography and Planning. 2021; 75(1): 51-63. (Persian)
11.Rafati S, Karimi M. Assessment of homogenization of climate data and trend of temperature. Journal of the Earth and Space Physics. 2018; 44(1): 199-214. (Persian)
12.Alipoor H, Malekian A. Assessment of homogeneity and trend of precipitation thresholds based on nonparametric approaches in north-west Iran. Journal of Watershed Engineering and Management. 2019; 11(4): 917-928. (Persian)
13.Mahshahr Municipality 2021; [About Mahshahr] Available at: URL: https://mahshahr.ir
14.Finkelstein PL. Quality Assurance Handbook for Air Pollution Measurement Systems: Meteorological measurements. U.S. Environmental Protection Agency, Environmental Monitoring Systems Laboratory; 1976.
15.Environmental Protection Agency (EPA). Quality assurance handbook for air pollution measurement systems. EPA-600/4: Office of Research and Development; 1983; 82(60): 34-35.
16.Papp, M. Quality Assurance Handbook for Air Pollution Measurement Systems Vol2 Part1, Ambient Air Quality Monitoring Program Quality System Development: U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards; 1998.
17.Environmental Protection Agency (EPA). Data Quality Assessment, A Reviewer’s Guide, EPA QA/G-9R: Office of Research and Development; 2006.
18.Environmental Protection Agency (EPA). Guidance on Environmental Data Verification and Data Validation, EPA QA/G8: Office of Research and Development; 2002.
19.Hasanzadeh R, Maddah M. Methods in behavioral at science (Descriptive and inferential statistics). 2th ed. Tehran; 2016.
20.Moazami A, Carlucci S, Geving S. Critical Analysis of Software Tools Aimed at Generating Future Weather Files with a view to their use in Building Performance Simulation. Energy Procedia. 2017; 132:640-645.
21.Batikian CM, Lu A, Watanabe K, et al. Temporal pattern in levels of the neonicotinoid insecticide, imidacloprid, in an urban stream. Chemosphere. 2019; 223:83-90.
22.Thornton PE, Shrestha R, Thornton M, et al. Gridded daily weather data for North America with comprehensive uncertainty quantification. Scientific Data. 2021; 8(1):190
23.Rahmdel M, Sanaeinejad SH, Javanshiri Z, et al. Exploratory analysis and in-homogeneity study of temperature and rainfall series of meteorological stations in Iran (period 1989-2018). Journal of the Earth and Space Physics. 2021; 47(2):387-407. (Persian)
24.Rahmdel m, Sanaei Nejad SH, javanshiri z. Investigating and documenting the problems of atmospheric data monitoring system in Iran meteorological organization with pathological approach. Journal of Climate Research. 2021; 1400(45): 25-42.
25.Atiah WA, Tsidu GM, Amekudzi LK. Investigating the merits of gauge and satellite rainfall data at local scales in Ghana, West Africa. Weather and Climate Extremes. 2020; 30: 100292.
26.Amekudzi LK, Yamba EI, Preko K, et al. Variabilities in Rainfall Onset, Cessation and Length of Rainy Season for the Various Agro-Ecological Zones of Ghana. Climate. 2015; 3(2): 416-34.
27.Atiah WA, Amekudzi LK, Quansah E, et al. The Spatio-Temporal Variability of Rainfall over the Agro-Ecological Zones of Ghana. Atmospheric and Climate Sciences. 2019; Vol.09 No.03:18.
28.Araki S, Hasunuma H, Yamamoto K, et al. Estimating monthly concentrations of ambient key air pollutants in Japan during 2010–2015 for a national-scale birth cohort. Environmental Pollution. 2021; 284: 117483.
29.Jat R, Gurjar BR, Lowe D. Regional pollution loading in winter months over India using high resolution WRF-Chem simulation. Atmospheric Research. 2021; 249:105326.
30.Mentese S, Mirici NA, Elbir T, et al. A comprehensive assessment of ambient air quality in Çanakkale city: Emission inventory, air quality monitoring, source apportionment, and respiratory health indicators. Atmospheric Pollution Research. 2020; 11(12): 2282-2296.
31.Zeydan, Ö., & Öztürk, E. (2021). Modeling of PM10 emissions from motor vehicles at signalized intersections and cumulative model validation. Environmental Monitoring and Assessment, 193(9), 1-17.
32.Mazzeo, A., Zhong, J., Hood, C., Smith, S., Stocker, J., Cai, X., & Bloss, W. J. (2022). Modelling the impact of national vs. local emission reduction on PM2. 5 in the West Midlands, UK using WRF-CMAQ. Atmosphere, 13(3), 377.
33.Environmental Protection Agency (EPA). Quality Assurance Handbook for Air Pollution Measurement Systems vol2: Ambient Air Quality Monitoring Program, EPA-454/B-17-001: Office of Research and Development; 2017.
34.Hanks E, Environmental Protection Agency (EPA). SLAMS/NAMS/PAMS Network Review Guidance Final Report, EPA-454/R-98-003: Monitoring and Quality Assurance Group, Emissions, Monitoring, and Analysis Division; 1998.