نوع مقاله : مقالات پژوهشى اصیل کمی و کیفی

نویسندگان

1 گروه محیط زیست، دانشکده فنی و مهندسی، دانشگاه آزاد اسلامی واحد دماوند، تهران، ایران

2 گروه مهندسی محیط زیست، دانشکده علوم و فنون دریایی،دانشکده علوم و فنون دریایی، دانشگاه آزاد اسلامی واحد تهران شمال، تهران، ایران

3 پژوهشکده گاز، پژوهشگاه صنعت نفت، تهران، ایران

4 گروه محیط زیست،دانشکده فنی و مهندسی، دانشگاه آزاد اسلامی واحد دماوند، دماوند، ایران

5 پژوهشکده چرخه سوخت هسته ای، پژوهشگاه علوم و فنون هسته ای، تهران، ایران

چکیده

زمینه و هدف: مونوکسید کربن ترکیب مهمی است که قابلیت تبدیل به مواد شیمیایی مختلف و آسیب رساندن به محیط زیست و انسان را دارد. انتخاب مکانیزم و جاذب جهت جذب گازهای آلاینده از لجاظ کارایی و هزینه اهمیت بسزایی دارد. در مطالعه حاضر بهینه سازی غربال های مولکولی کربن ساخته شده با هدف جذب بیشتر مونو‌کسید‌کربن انجام شد.
مواد و روش ها: در این تحقیق از پوست گردو برای ساخت غربال مولکولی کربن و از روش فیزیکی برای فعال‌سازی کربن استفاده شد.. بهینه سازی جاذب ها دانه بندی شده طی دو فرآیند فرآوری و لایه گذاری انجام شد. جاذب ها در pH=4.5-6.5-9 فرآوری و با مخلوط های روغن– نفت و روغن–تینر (نسبت 1:1) لایه گذاری شدند. ظرفیت جذب مونو‌کسید‌کربن توسط جاذب ها در شرایط یکسان(2 گرم جاذب ، دمای °C 25 و فشار 2 بار) به روش حجمی اندازه گیری شد.
یافته ها: بیشترین راندمان در میان جاذب های فرآوری نشده برای CMS (Ac) با 281/0 میلی مول مونو‌کسید‌کربن بر گرم و در میان جاذب های فرآوری شده و لایه گذاری شده با روغن – نفت برای CMS (Al-K) با 591/0 میلی مول مونو‌کسید‌کربن بر گرم و در میان جاذب های فرآوری شده و لایه گذاری شده با روغن - تینر و در میان تمام جاذب ها برای CMS (Al-T) با 858/0 میلی مول مونو‌کسید‌کربن بر گرم بدست آمد.
نتیجه گیری: غربال مولکولی کربن توانایی جذب و کاهش غلظت مونو‌کسید‌کربن که از آلاینده های محیط زیست محسوب می شود را دارد. بهینه سازی راندمان جذب را افزایش می دهد.

کلیدواژه‌ها

عنوان مقاله [English]

Preparation and optimization of carbon molecular sieves for carbon monoxide adsorption

نویسندگان [English]

  • reza zahedi 1
  • Hossein,, Ghafourian 2
  • Yahya Zamani 3
  • Shahrzad, Khoramnejhadian 4
  • Reza Dabbagh 5

1 Department of Environment, Damavand Branch, Islamic Azad University, Damavand, Iran,

2 Department of Environment Engineering, Tehran North Branch, Islamic Azad University, Tehran, Iran

3 Gas research division Research Institute of Petroleum, Tehran, Iran

4 Department of Environment, Damavand Branch, Islamic Azad University, Damavand, Iran

5 Nuclear Fuel Research School, Nuclear Sciences & Technology Research Institute, (NSTRI), Tehran, Iran

چکیده [English]

Background and purpose: The carbon monoxide is an important compound which can convert to different chemical materials which is harmful to environment and humans. Selecting the mechanism and absorbent to absorption pollutant gases is very important due to the efficiency. This study aimed to optimize the carbon molecular sieves prepared which cause the adsorption of more carbon monoxide.
Materials and methods: In this study, a walnut shell was used to prepare a carbon molecular sieve and activate the carbon was used physical method. The adsorbents were optimized during two modifying and coating processes after granulation. The adsorbents were modified at pH = 4.5-6.5-9 which layered with oil-oil and oil-thinner mixtures (1: 1 ratio). The adsorption capacity of carbon monoxide by the adsorbents was measured by the volumetric method under the same conditions (2g of adsorbent, 25 °C temperature, and 2 bar pressure).
Results: The highest efficiency among those without modified adsorbents for CMS (Ac) with 0.281 mmol CO/g adsorbents and among those coated with oil-kerosene adsorbents for CMS (Al-K) with 0/591 mmol CO/g adsorbent and among the adsorbents coated with oil -thinner and among all adsorbents for CMS (Al-T) with 0.858 mmol CO/g adsorbents.
Conclusion: A carbon molecular sieve can absorb and reduce the concentration of CO, which is an environmental pollutant. Optimization causes to increase the adsorption efficiency.

کلیدواژه‌ها [English]

  • Adsorption Capacity
  • Carbon molecular sieve
  • CO
  • Modifying
  • Coating
  1. 1.Dehghani M. Asghari M. Mohammadi A. et al. Molecular simulation and Monte Carlo study of structural-transport-properties of PEBA-MFI zeolite mixed matrix membranes for CO2, CH4 and N2 separation.Comput Chem Eng 2017; 103: 12-22.

    2.Liu D. Wu Y. Xia Q. et al. Experimental and molecular simulation studies of CO2 adsorption on zeolitic imidazolate frameworks: ZIF-8 and amine-modified ZIF-8. Adsorption 2013, 19(1): 25-37.

    3.Darkrim F.L. Malbrunot P. Tartaglia G.P. Review of hydrogen storage by adsorption in carbon nanotubes. Int; J Hydrogen Energy 2002; 27(2): 193-202.

    4.Siriwardane R V. Shen M.S. Fisher E P. et al. Adsorption of CO2 on Molecular Sieves and Activated Carbon. Energy Fuels 2001; 15(2): 279-284.

    5.Lozano-Castello D. Alcaniz-Monge J. Cazorla-Amoro´s D. eat al. Adsorption properties of carbon molecular sieves prepared from an activated carbon by pitch pyrolysis. Carbon 2005, 43(8): 1643-1651.

    6.Lithoxoos G P. Labropoulos A. Peristeras L D. et al. Adsorption of N2, CH4, CO and CO2 gases in single walled carbon nanotubes: A combined experimental and Monte Carlo molecular simulation study.J Supercrit Fluids 2010; 55(2): 510-523.

    7.Mukhtar A. Mellon N. Saqib S.et al. CO2/CH4 adsorption over functionalized multi-walled carbon nanotubes; an experimental study, isotherms analysis, mechanism, and thermodynamics; Microporous Mesoporous Mater 2020; 294: 1-76.

    8.Park Y. Moon D K. Park D. et al. Adsorption Equilibria and Kinetics of CO2, CO, and N2 on Carbon Molecular Sieve. Sep Purif Technol 2019; 212:952-964.

    9.Song X. Wanga L. Maa X. et al. Adsorption equilibrium and thermodynamics of CO2 and CH4 on carbon molecular sieves. Appl Surf Sci 2017; 396: 870-878.

    10.Zahedi R. Ghafourian H. Zaman Y. Khoramnejhadian Sh. et al. Study of Carbon Dioxide and Methane Adsorption on Carbon Molecular Sieves, Raw and Modified by Waste Engine Oil. J Serb Chem Soc. 2020; 85 (8): 1083-1093.

    11.Marsh H. Rodríguez-Reinoso F.Activated Carbonin: Activation Processes (Thermal or Physical). CHAPTER 5.1th ed.Elsevier Science Ltd; 2006. P. 243-321.

    12.Marsh, H.; Rodríguez-Reinoso, F. Activated Carbon in: Activation Processes (Chemical) CHAPTER 6.1th ed.Elsevier ScienceLtd; 2006. P. 322-365.

    13.Dabrowski A. Adsorption and its Applications in Industry and Environmental Protection. Amsterdam: ElsevierScience; 1999. P. 191.

    14.Adinata D. Wan Daud W M A. Aroua M K. Production of carbon molecular sieves from palm shell based activated carbon by pore sizes modification with benzene for methane selective separation. Fuel Process Technol 2007; 88: 599-605.

    15.KalderisD. Bethanis S. Paraskeva P. et al. Production of activated carbon from bagasse and rice husk by a single-stage chemical activation method at low retention times. Bioresour Technol 2008; 99: 6809-6816.

    16.Martinez M. Torres M. Guzman C. Maestri D. Preparation and characteristics of activated carbon from olive stones and walnut shells. Industrial Crops and Products 2006; 23: 23-28.

    17.Aygun A. Yenisoy-Karakas S. Duman I. Production of granular activated carbon from fruit stones and nutshells and evaluation of their physical, chemical and adsorption properties. Microporous Mesoporous Mater 2003; 66(2-3): 189-195.

    18.Martinez M. Torres M. Guzman C. Maestri D. Preparation and characteristics of activated carbon from olive stones and walnut shells. Ind. Crops Prod 2006; 23: 23-28.

    19.Mousavi Z. Bozorgzadeh H R. Molecular Sieves from Pistachio Shell and Walnut Shell for Kinetic Separation of Carbon Monoxide, Hydrogen and Methane. Iran J Chem Chem Eng 2017; 36: 71-80.

    20.Tae-Hwan K. Vijayalakshmih S. Seok Jinc S. et al. Carbon molecular sieves (CMS) from coconut shell by carbonization and carbon dioxide activation. Indian J Chem Technol 2003; 10(3): 298-304.

    21.Miura K. Hayashi J. Hashimoto K. Production of Molecular Sieving Carbon through Carbonization of Coal Modified by Organic Additives. Carbon1991; 29(4/5): 653-660.

    1. A Lizzio A. Rostam-Abadi M. Production of carbon molecular sieves from Illinois coal. Fuel Process Technol1993; 34(2): 97-122.

    23.VĂDUVA M. STANCIU V.SELECTIVE CARBON DIOXIDE ADSORPTION FROM N2-CH4-CO2 MIXTURE ON CARBON MOLECULAR SIEVES. Sci Bull Univ "Politeh." Bucharest Ser B Chem Mater Sci 2007; 67(4): 59-70.

    24.Yang Z. Wang D. Meng Z. et al. Adsorption separation of CH4/N2 on modified coal-based carbon molecular sieve. Sep Purif Technol 2019; 218: 130-137.

    25.Zhang J. Qu S. Li L. Wang P. Li X. Che Y. Li X. Preparation of Carbon Molecular Sieves Used for CH4/N2 Separation. J Chem Eng Data 2018; 63(5): 1737-1744.

    26.Horikawa T. Hayashi J. Muroyama K. Preparation of Molecular Sieving Carbon from Waste Resin by Chemical Vapor Deposition. Carbon 2002; 40(5): 709-714.

    27.Okada K. YamamotoN. Kameshima Y. Yasumori A.Adsorption properties of activated carbon from waste newspaper prepared by chemical and physical activation. J Colloid Interface Sci.2003; 262: 194–199.

    28.Wahby A. Ramos-Fernández José M. Martínez-Escandell M. et al. High-Surface-Area Carbon Molecular Sieves for Selective CO2 Adsorption.ChemSusChem, 2010; 3: 974-981.

    29.Ko D. Comparison of carbon molecular sieve and zeolite 5A for CO2 sequestration from CH4/CO2 mixture gas using vacuum pressure swing adsorption. Korean J. Chem. Eng. 2021; 38(5):1043-1051.

    30.Boonpoke A. Chiarakorn S. Laosiripojana N. et al. Synthesis of activated carbon and MCM-41 from bagasse and rice husk and their carbon dioxide adsorption capacity. J Sus Energy & Environ. 2011; 2(2): 77-81.

    31.Kwon S. You Y. Lim H. et al. Selective CO adsorption using sulfur-doped Ni supported by petroleum-based activated carbon. J. Ind. Eng. Chem. 2020; 83: 289-96.

    32.Muralikrishnan R. Swarnalakshmi M. Nakkeeran E. Nanoparticle-Membrane Filtration of Vehicular Exhaust to Reduce Air Pollution – A Review. Int Res J Environ Sci. 2014; 3(4): 82-86.

    33.ASTM E0011. Specification for Wire Cloth and Sieves for Testing Purposes; 2006.

    34.ASTM D1388-96R02. Test method for stiffness of fabrics; 2006.

    35.Heinzer PJ. ASM Handbook Vol. 7 Powder Metallurgy. ASM International Publishers; 1998. P. 278-280.