نوع مقاله : مقالات پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد مدریت منابع آب، گروه مهندسی عمران ، واحد اهواز، دانشگاه آزاد اسلامی، اهواز، ایران.

2 استادیار، گروه علوم و مهندسی آب، واحد اهواز، دانشگاه آزاد اسلامی، اهواز، ایران.

چکیده

زمینه و هدف: آب زیرزمینی یک منبع مهم آب در جهان به‌شمار می‌رود و مطالعه سطح آب زیرزمینی و شوری آب ریرزمینی برای حفاظت و برنامه‌ریزی در خصوص منابع آب، به‌خصوص در مناطق خشک و نیمه‌خشک مانند ایران اهمیت به‌سزایی دارد. انجام آزمایش‌های کمی و کیفی، زمان‌بر و پرهزینه است. بنابراین، استفاده از مدل‌ها برای شبیه‌سازی کمیت وکیفیت آب زیرزمینی متداول شده است. در دهه‌های اخیر به سبب پیچیدگی و خصوصیات غیر خطی سیستم-های آب زیرزمینی، مد‌ل‌های هوش مصنوعی برای شبیه‌سازی آبخوان‌ها مورد آزمایش قرار گرفته‌اند.
مواد و روش‌ها: پژوهش حاضر به منظور شبیه‌سازی پارامترهای سطح آب زیرزمینی و شوری آب زیرزمینی دشت دزفول- اندیمشک با استفاده از مدل‌های ANN و ANN+GA و درنهایت مقایسه نتایج آن‌ها با داده‌های اندازه‌گیری شده‌، انجام گرفته است. اطلاعات جمع‌آوری شده برای ورودی به دو مدل‌ شامل داده‌های هواشناسی و پارامترهای کیفی آب زیرزمینی طی سال‌های 1390 تا 1397 به‌صورت ماهانه از 76 چاه می‌باشد.
یافته‌ها: نتایج نشان داد، مدل بهینه برای شبیه‌سازی سطح آب زیرزمینی ANN+GA با تابع محرک تانژانت سیگموئید و مدل بهینه برای شبیه‌سازی شوری آب زیرزمینی ANN+GA با تابع محرک لگاریتم سیگموئید می‌باشد. به‌طوریکه مقدار آماره‌های RMSE و MAE کمترین مقدار و بیشترین مقدار را برای مدل‌های مذکور دارد (در مرحله آزمون، برای پارامتر سطح آب زیرزمینی مقدار 47/7RMSE=، 5/9 MAE=و 979/0= R2و برای پارامتر شوری آب زیرزمینی مقدار 8/6RMSE=، 47/7 MAE= و 99/0= R2محاسبه گردید).
نتیجه‌گیری: بنابراین بهینه‌سازی مدل شبکه عصبی مصنوعی با استفاده از الگوریتم ژنتیک بسیار مفید، موثر و همچنین باعث کاهش خطا و صرفه‌جویی در زمان و هزینه می‌گردد.

کلیدواژه‌ها

عنوان مقاله [English]

Groundwater modeling using artificial intelligence methods (Case study: Dezful-Andimeshk plain)

نویسندگان [English]

  • Jeyran Askari 1
  • Aslan Egdernezhad 2

1 M.Sc. Student, Department of Civil Engineering, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran.

2 Assistant Professor, Department of Water Sciences and Engineering, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran.

چکیده [English]

Background and Aim: Groundwater is one of the most important water resources on earth, and groundwater level and groundwater salinity studies are very important to protect and plan the water resources, especially in the arid and semiarid areas, such as Iran. Groundwater quantitative and qualitative testing is time-consuming and costly. Therefore, using the models to simulate the quantity and quality of groundwater has become common.
Materials and Methods: In recent decades, the artificial intelligence models were tested for the simulation of aquifers in terms of the complex and nonlinear properties of groundwater systems. The present study stimulated the groundwater level and groundwater salinity parameters of Dezful-Andimeshk plain using ANN and ANN + GA models, and finally compared their results with measured data. The data collected for input to two models include meteorological data and groundwater quality parameters gathered from 2011 to 2018.
Results: The results showed that the optimal model is to simulate ANN + GA (Artificial Neural Network + Genetic Algorithm) groundwater level with sigmoid tangent stimulus function, and the optimal model is to simulate ANN + GA groundwater salinity with sigmoid logarithm stimulus function. MAE and RMSE statistics have the minimum and  has maximum value for the model (In test phase, for the groundwater level RMSE=7.47, MAE=9.5 and R2=0.979 and for the groundwater salinity RMSE=6.81, MAE=7.74, and R2=0.99).
Conclusion: Therefore, optimizing the artificial neural network model using a genetic algorithm is very useful, effective and reduces errors and saves time and money.

کلیدواژه‌ها [English]

  • Groundwater level
  • Simulation
  • Groundwater salinity
  • Artificial Neural Networks model
  1. Naderianfar M, Ansari H, Ziaie A, Davary K. Evaluating the groundwater level fluctuations under different climatic conditions in the basin Neyshabour. Journal of Irrigation and Water Engineering. 2011; 1(3): 22-37 [In Persian].
  2. Anonymous. Report on the mathematical model of groundwater in the Marvast area. 2001; Yazd Regional Water Joint Stock Company [In Persian].
  3. Luk KC, Ball J.E, Sharma A. An application of artificial neural network for rainfall forecasting. Mathematical and Computer Modelling. 2001; 33 (6-7): 683-693.
  4. Rajaee T, Pouraslan F. Temporal and spatial forecast of Davarzan plain groundwater level. Hydrogeomorphology. 2015; 1(4): 1-19 [In Persian].
  5. Mohammadi B, Biazar M, Asadi E. Efficiency of particle swarm hybrid algorithm in simulating water level (Case study: Ardabil plain aquifer). Journal of Rainwater Reservoir Systems. 2017; 5(15): 77-87 [In Persian].
  6. Emami S, Choopan Y, Javad P. Modeling the groundwater level of Miandoab plain using selection algorithms, genetics and artificial neural network method. Echo hydrology. 2018; 5(4): 1175-1189 [In Persian].
  7. Rezaee M.J, Rezaee M.R, Rezaee J. Estimation of Groundwater Level Changes Using Four Different Evolutionary Neural Network Techniques, Case Study: Dasht-e Abbas, Ilam Province. Journal of Watershed Engineering and Management. 2020; 12 (3): 737-755 [In Persian].
  8. Gong Y, Zhang Y, Lan S, Wang H. A comparative study of artificial neural networks, support vector machines and adaptive neuro fuzzy inference system for forecasting groundwater levels near Lake Okeechobee, Florida. Water resources management. 2016; 30(1), 375-391.
  9. Dayhoff J. E. Neural Network Principles. Prentice-Hall International, U.S.A. 1990.
  10. Khanna T. Foundation of neural networks. Addison-Wesley Publishing Company, U.S.A. 1990.
  11. Kia M. Magnetic algorithms in MATLAB. Kian Rayane Sabz Publishing Services, Tehran. 2010 [In Persian].
  12. Goldberg D.E. Genetic Algorithms in Search Optimization and Machine Learning. Addison-Wesley. 1989.
  13. Karimiyan A.R, Egdernezhad A. Simulation of groundwater level and groundwater salinity parameters of Ramhormoz plain using artificial neural network model and optimized artificial neural network mode. Journal of Environmental Health Research. 2021; 7(1): 17-26 [In Persian].
  14. Kamasi M, Sharghi S, Nourani V. Identification of Factors Affecting Groundwater Level Reduction Using Wavelet-Entropy Criterion (Case Study: Silakhor Plain Aquifer). Hydrogeomorphology. 2016; 9 (4): 63-86 [In Persian].
  15. Soltani Mohammadi A, Sayadi Shahraki A, Naseri A.A. Simulation of Groundwater Quality Parameters Using ANN and ANN+PSO Models (Case Study: Ramhormoz Plain). Journal of Pollution. 2016; 3 (2): 191-200.
  16. Sayadi Shahraki A, Soltani Mohammadi A, Naseri A. A, Mokhtaran A. Simulation of groundwater salinity using Artificial Neural Network (ANN), Particle Swarm Optimization (PSO) and model SEAWAT (Case study: Debal khazaie sugarcane plantation). Journal of Water and Soil Conservation. 2017; 23(5): 307-316 [In Persian].
  17. Zamani Ahmad Mahmoodi R, Akhound Ali A.M, Zareie H, Raadmanesh F. Estimation of water table using a hybrid method optimized by genetic algorithm. Journal of Water Resources Engineering. 2014; 4(15): 26-38 [In Persian].
  18. Jalalkamali A, Jalalkamali N. Groundwater modeling using hybrid of artificial neural network with genetic algorithm. African Journal of Agricultural Research. 2011; 6(26): 5775-5784.
  19. Dash N.B, Panda S.N, Remesan R, Sahoo, N. Hybrid neural modeling for groundwater level prediction. Neural Computing and Applications. 2010; 19(8): 1251-1263.