بررسی حضور هلیکوباکتر پیلوری در شیر آب مصرفی بیمارستان‌های منتخب شهر تهران با روش‌ واکنش‌ زنجیره‌ای پلیمراز در سال 1399

نوع مقاله : Research Paper

نویسندگان

1 دانشجوی کارشناسی ارشد، گروه مهندسی بهداشت محیط، دانشکده بهداشت، علوم پزشکی تهران، دانشگاه آزاد اسلامی، تهران، ایران.

2 دانشیار گروه مهندسی بهداشت محیط، دانشکده بهداشت، علوم پزشکی تهران، دانشگاه آزاد اسلامی، تهران، ایران.

3 استادیار گروه مهندسی بهداشت محیط، دانشکده بهداشت، علوم پزشکی تهران، دانشگاه آزاد اسلامی، تهران، ایران.

چکیده

چکیده
زمینه و هدف: هلیکوباکتر پیلوری، شایع‌ترین پاتوژن گوارشی است که بیش از نیمی از مردم دنیا آلوده به این باکتری می‌باشند. هلیکوباکتر پیلوری باکتری، عامل زخم گوارشی (گاستریت مزمن)، سرطان معده، لمفوم و آدنوکارسینوم می‌باشد. مطالعه حاضر با هدف کاربرد روش واکنش زنجیره‌ای پلیمرازی (PCR) برای حضور هلیکوباکتر پیلوری شیر آب مصرفی و آب چاه بیمارستان‌های منتخب شهر تهران سال 1399 انجام‌ گرفت. مواد و روش‌ها: در این مطالعه توصیفی- تحلیلی خوشه‌ای تصادفی، نمونه‌ها از شیر آب مصرفی سیستم توزیع آب آشامیدنی ۲۲ نمونه و آب چاه ۶ نمونه از بیمارستان‌های منتخب در نواحی مختلف شهر تهران از تاریخ 15 شهریور تا 30 آبان 1399 تهیه شد. نمونه‌ها در ظروف استریل بر اساس دستورالعمل روش‌های استاندارد ملی جمع‌آوری شد. هلیکوباکتر پیلوری در این تحقیق با استفاده از روش واکنش زنجیره‌ای پلیمرازی (PCR) و کشت‌ سطحی ارزیابی ‌شد. تجزیه و تحلیل داده‌ها با استفاده از نرم‌افزار آماری SPSS، ورژن 18 انجام گرفت. یافته‌ها: در این مطالعه شیوع هلیوباکتر پیلوری با روش PCR، 2 مورد (10/3 درصد) گزارش شد. میانگین تعداد هلیوباکتر پیلوری در میلی‌لیتر نمونه‌های شیر آب مصرفی و آب چاه به‌ترتیب 0/18±0/85 و 0/67±1/63 بود. میانگین تعداد باکتری‌های بشقابی هترتروفی در میلی‌لیتر نمونه‌های شیر آب‌ مصرفی و آب چاه بیمارستان‌های منتخب شهر تهران به‌ترتیب 0/0±0/0 و 2/10±7/83 بود. میانگین تعداد باکتری‌های کلیفرم، اشرشیا کلی، پسودوموناس آئروژینوزا، کلستریدیوم پرفرینژینس و استرپتوکوکوس فکالیس در 100 میلی‌لیتر نمونه‌های شیر آب مصرفی 0/0±0/0 بود. نتیجه‌گیری: هلیکوباکتر پیلوری به‌علت مقاومت تحت شرایط نامساعد محیطی ماندگاری بالایی در محیط آبی دارد و حذف آن شاخصی از بهداشت محیط مناسب خواهد بود. کنترل آلودگی و استراتژی‌های پیشگیری به‌منظور کاهش خطر حضور هلیکوباکتر پیلوری برای تهیه‌ منابع آب سالم به مقامات بهداشت عمومی ‌پیشنهاد می‌شود. بررسی کیفیت بیولوژیکی (باکتری هتروتروفی، کلیفرم، اشرشیا کلی، پسودوموناس آئروژینوزا، کلستریدیوم پرفرینژینس، استرپتوکوکوس فکالیس)، کیفیت فیزیکی- شیمیایی آب و هلیکوباکتر پیلوری، از جمله نقاط قوت و نوآوری این تحقیق محسوب می‌شوند.

کلیدواژه‌ها


عنوان مقاله [English]

Survey the existence of Helicobacter pylori iin the consumption tap of selected hospitals in Tehran city by polymerase chain reactions in 2020

نویسندگان [English]

  • Narjes Bagheri 1
  • Giti Kashi 2
  • Hamid Reza Tashauoei 3
1 MSc student of Department of Environmental Health, Faculty of Health, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
2 Associate Professor, Department of Environmental Health Engineering, Faculty of Health, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran, & Water Purification Research Center, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
3 Assistant Professor, Department of Environmental Health Engineering, Faculty of Health, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
چکیده [English]

Abstract
Background and Aim: Helicobacter pylori is the most common gastrointestinal pathogen infecting more than half of the world's population. Helicobacter pylori is a bacterium that causes gastrointestinal ulcers (chronic gastritis), stomach cancer, lymphoma, and adenocarcinoma. This study aimed to apply the Polymerase Chain Reaction (PCR) for investigating Helicobacter pylori in the tap water of selected hospitals in Tehran in 2020.
Materials and Methods: In this study, 22 tap water samples and six well water samples were randomly gathered from the selected hospitals in different areas of Tehran from September 5 to November 20, 2020. The samples were collected in sterile bottles according to the procedure detailed in national standard methods. In this study, Helicobacter pylori was evaluated using Polymerase Chain Reaction (PCR) and surface culture. Data analysis was done by SPSS18 software.  
Results: This study showed Helicobacter pylori in two samples (10.3%) by PCR. The mean values of Helicobacter pylori in tap water and well water samples were 0.18 ± 0.85 and 0.67±1.63, respectively. The mean values of heterotrophic plate count in tap water and well water samples were 0.00 ±0.00 and 7.83±2.10, respectively. The mean values of coliforms, Escherichia coli, Pseudomonas aeruginosa, Clostridium perfringens, and Streptococcus faecalis in tap water were 0.00 ±0.00.
Conclusion: Helicobacter pylori has high persistence in the aquatic environment due to resistance in harsh environments and its absence will be an indicator of proper environmental health. So, according to our results, infection control and preventive strategies to reduce the risk of exposure to Helicobacter pylori for safe water supply are purposed to public health authorities. The evaluation of the biological quality of water (heterotrophic bacteria, coliforms, Escherichia coli, Pseudomonas aeruginosa, Clostridium perfringens, and Streptococcus faecalis), physicochemical quality of water, and Helicobacter pylori in water is among the strengths and innovations of this research.

کلیدواژه‌ها [English]

  • Helicobacter pylori
  • Heterotrophic plate count
  • Polymerase Chain Reaction (PCR)
  • Surface Culture
  1. Kashi G, Potkee M. Investigation Electro-photocatalytic Removal of Acetaminophen from Drinking Water. 2016.
  2.  Fonyuy BE. Prevalence of water borne diseases within households in the Bamendankwe Municipality-North West Cameroon. Journal of Biosafety & Health Education. 2014.
  3.  Muzaheed A. Helicobacter pylori oncogenicity, mechanism, prevention, and risk factors. The Scientific World Journal 2020:1-10.
  4.  Mentis A-FA, Boziki M, Grigoriadis N, Papavassiliou AG. Helicobacter pylori infection and gastric cancer biology: tempering a double-edged sword. Cellular and Molecular Life Sciences. 2019;76(13):2477-86.
  5.  Venerito M, Vasapolli R, Rokkas T, Malfertheiner P. Gastric cancer: epidemiology, prevention, and therapy. Helicobacter. 2018;23:e12518.
  6.  Choi YJ. Specific Conditions: Diagnosis of H. pylori Infection in Case of Upper Gastrointestinal Bleeding. Helicobacter pylori: Springer; 2016. p. 157-62.
  7.  Ford AC, Yuan Y, Forman D, Hunt R, Moayyedi P. Helicobacter pylori eradication for the prevention of gastric neoplasia. Cochrane database of systematic reviews. 2020(7).
  8.  Eusebi L, Zagari R, Bazzoli F. Epidemiology of Helicobacter pylori infection. Helicobacter 2014;19:1-5.
  9. Stefano K, Marco M, Federica G, Laura B, Barbara B, Gioacchino L. Helicobacter pylori, transmission routes and recurrence of infection: state of the art. Acta Bio Medica: Atenei Parmensis. 2018;89(Suppl 8):72.
  10. Aziz RK, Khalifa MM, Sharaf RR. Contaminated water as a source of Helicobacter pylori infection: A review. Journal of advanced research. 2015;6(4):539-47.
  11.  Delgado Carreño C, Rojas B. Helicobacter pylori in water sources and food products: A constant public health problem. 2018.
  12. García A, Salas-Jara MJ, Herrera C, González C. Biofilm and Helicobacter pylori: from environment to human host. World Journal of Gastroenterology: WJG. 2014;20(19):5632.
  13.  Alighadri M, Sadeghi T, Bagheri Ardebilian P, Iranpour E, Khodaverdi S, Alipanah A. Heterotrophic Bacteria in Drinking Water Distribution System in Ardabil, Iran. Iran Journal of Health 2015;6(2):226-35.
  14. Ranjbar R, Khamesipour F, Jonaidi‐Jafari N, Rahimi E. Helicobacter pylori isolated from Iranian drinking water: vacA, cagA, iceA, oipA and babA2 genotype status and antimicrobial resistance properties. FEBS Open Bio. 2016;6(5):433-41.
  15. Vesga F-J, Moreno Y, Ferrús MA, Campos C, Trespalacios AA. Detection of Helicobacter pylori in drinking water treatment plants in Bogotá, Colombia, using cultural and molecular techniques. International journal of hygiene and environmental health. 2018;221(4):595-601.
  16.  Farhoodi A-M, Kashi G, Khani AH. Survey of Arsenic and Copper Ions Concentration in Water Distribution System of Selected Hospitals in Tehran, 2018. Irtiqā-yi īminī va pīshgīrī az maṣdūmiyat/ha (ie, Safety Promotion and Injury Prevention). 2020;7(4):199-207.
  17.  Federation WE, Association A. Standard methods for the examination of water and wastewater. American Public Health Association (APHA): Washington, DC, USA. 2017.
  18. Alvandi A, Abiri R, Aryan E, Rezaei M, Bagherabadi S. High frequency of Helicobacter pylori DNA in drinking water in Kermanshah, Iran, during June–November 2012. Journal of water and health. 2014;12(3):504-12.
  19. Georgopoulos SD, Michopoulos S, Rokkas T, Apostolopoulos P, Giamarellos E, Kamberoglou D, et al. Hellenic consensus on Helicobacter pylori infection. Annals of gastroenterology. 2020;33(2):105.
  20.  Astiaso Garcia D, Cumo F, Tiberi M, Sforzini V, Piras G. Cost-benefit analysis for energy management in public buildings: Four Italian case studies. Energies. 2016;9(7):522.
  21.  Kashi G, Doost KK. Comparison of the effect of lecture and video projector teaching methods on students’ attitude, knowledge and practice. 2015.
  22.  Majdi H, Gheibi L, Soltani T. Evaluation of physicochemical and microbial quality of drinking water of villages in Takab Town in West Azerbaijan in 2013. Journal of Rafsanjan University of Medical Sciences. 2015;14(8):631-42.
  23.  Ibekwe AM, Murinda SE. Linking microbial community composition in treated wastewater with water quality in distribution systems and subsequent health effects. Microorganisms. 2019;7(12):660.
  24.  Percival SL, Suleman L. Biofilms and Helicobacter pylori: dissemination and persistence within the environment and host. World journal of gastrointestinal pathophysiology. 2014;5(3):122.
  25.  Abolli S, Alimohammadi M, Zamanzadeh M, Yaghmaeian K, Yunesian M, Hadi M, et al. Survey of drinking water quality of household water treatment and public distribution network in Garmsar city, under the control of water safety plan. Iranian Journal of Health and Environment. 2019;12(3):477-88.
  26.  Liu G, Lut M, Verberk J, Van Dijk J. A comparison of additional treatment processes to limit particle accumulation and microbial growth during drinking water distribution. Water Research. 2013;47(8):2719-28.
  27. Molazadeh P, Khanjani N, Rahimi M, Molazadeh A, Rahimi A. Fungal and Biological Contamination and Physicochemical Quality of Swimming Pools Water in Kerman, 2014-2015: A Short Report. Journal of Rafsanjan University of Medical Sciences. 2016;15(5):491-500.
  28.  Ghaneian MT, Amrollahi M, Ehrampoush MH, Dehvari M. Investigation of the physical, chemical, and microbial quality of yazd warm water pools (jacuzzi) in 2011. Iranian Journal of Health and Environment. 2013;6(3).
  29.  Akrong M, Amu-Mensah F, Amu-Mensah M, Darko H, Addico G, Ampofo J. Seasonal analysis of bacteriological quality of drinking water sources in communities surrounding Lake Bosomtwe in the Ashanti Region of Ghana. Applied Water Science. 2019;9(4):1-6.
  30.  Wen X, Chen F, Lin Y, Zhu H, Yuan F, Kuang D, et al. Microbial Indicators and Their Use for Monitoring Drinking Water Quality—A Review. Sustainability. 2020;12(6):2249.
  31.  Ng W, Ting Y-P. Microbes in deionized water: Implications for maintenance of laboratory water production system. PeerJ Preprints. 2017;4:e181v4.
  32. Simoes LC, Simões M. Biofilms in drinking water: problems and solutions. Rsc Advances. 2013;3(8):2520-33.
  33.  Leonardi M, La Marca G, Pajola B, Perandin F, Ligozzi M, Pomari E. Assessment of real-time PCR for Helicobacter pylori DNA detection in stool with co-infection of intestinal parasites: a comparative study of DNA extraction methods. BMC microbiology. 2020;20:1-8.
  34.  Johannessen R, Bergh K, Jianu C, Kleveland PM. Polymerase chain reaction versus culture in the diagnosis of Helicobacter pylori infection. Gastroenterology Insights. 2013;5(1):1-6.
  35.  Abiri R, Bagherabadi S, Kashef M, Hasanvand B, Pajavand H, Gholipour A, et al. Detection of Helicobacter pylori in Drinking Water by Loop-Mediated Isothermal Amplification. Jundishapur Journal of Microbiology. 2017;10(4).
  36.  Bahrami AR, Rahimi E, Ghasemian Safaei H. Detection of Helicobacter pylori in city water, dental units' water, and bottled mineral water in Isfahan, Iran. The Scientific World Journal. 2013;2013.
  37.  Khan A, Farooqui A, Kazmi SU. Presence of Helicobacter pylori in drinking water of Karachi, Pakistan. The Journal of Infection in Developing Countries. 2012;6(03):251-5.
  38.  Ebaa E-S, Hossam E-S. Detection of Helicobacter pylori DNA in some Egyptian water systems and its incidence of transmission to individuals. Iranian journal of public health. 2015;44(2):203.
  39. Massoudian S, Ghane M, Moein FG. Absence of Helicobacter pylori in the river waters in the north of Iran. African Journal of Microbiology Research. 2012;6(8):1790-5.
  40. Hu J, Wang X, Chua EG, He Y, Shu Q, Zeng L, et al. Prevalence and risk factors of Helicobacter pylori infection among children in Kuichong Subdistrict of Shenzhen City, China. PeerJ. 2020;8:e8878.
  41.  Toh JW, Wilson RB. Pathways of Gastric Carcinogenesis, Helicobacter pylori Virulence and Interactions with Antioxidant Systems, Vitamin C and Phytochemicals. International Journal of Molecular Sciences. 2020;21(17):6451.
  42.  Gaddy JA, Haley KP. Metalloregulation of Helicobacter pylori physiology and pathogenesis. Frontiers in microbiology. 2015;6:911.
  43.  Saracino IM, Zaccaro C, Re GL, Vaira D, Holton J. The effects of two novel copper-based formulations on Helicobacter pylori. Antibiotics. 2013;2(2):265-73.
  44.  Rosier BT, Buetas E, Moya-Gonzalvez EM, Artacho A, Mira A. Nitrate as a potential prebiotic for the oral microbiome. Scientific Reports. 2020;10(1):12895.