تعهد نامه

نوع مقاله : Research Paper

نویسنده

مربی، گروه فیزیک پزشکی، دانشکده پزشکی، دانشگاه علوم پزشکی زاهدان، زاهدان، ایران

چکیده

زمینه و هدف: انسان در محیط پیرامون خود همواره در معرض تابش مواد رادیواکتیو موجود در مصالح ساختمانی می­باشد. از آنجایی که انسان با این مصالح فاصله زیادی ندارد، بنابراین احتمال پرتوگیری افراد بالا می­رود. مطالعه حاضر با هدف دوزیمتری سنگ­های تراورتن به‌کار رفته در ساختمان­های شهر شمالی استان زاهدان به‌منظور مشخص کردن رابطه بین رنگ سنگ و پرتوزایی آن انجام شد.
مواد و روش‌ها: سنگ‌های ساختمانی موجود و مصرفی شهر زاهدان شناسایی و فهرستی از آنها تهیه گردید. در مجموع 70 نمونه سنگ تراورتن توسط دوزیمتر قلمی مدل MKS در سه حالت تعیین آهنگ دوز گاما (EDR) برحسب میکروسیورت بر ساعت؛ تعیین دوز معادل گاما (ED) برحسب میلی‌سیورت و دانسیته شار بتا بر حسب قسمت بر سانتی‌متر مربع در دقیقه اندازه‌گیری شد.
یافته‌ها: بیشترین میانگین EDR در سنگ­های تراورتن در رنگ کرم به میزان 15/ 0میکروسیورت بر ساعت و کم‌ترین آن در سنگ سفید رنگ به میزان  0/01 میکروسیورت بر ساعت به‌دست آمد. بیشترین مقدار میانگین دانسیته شار بتا در سنگ­های تراورتن در نمونه رنگ کرم به میزان 0/0016قسمت بر سانتیمتر مربع در دقیقه  مشاهده شد. میزان ED تمامی نمونه­ها برابر صفر تعیین گردید.
نتیجه‌گیری: مقدار ماکزیمم EDR و شار بتا برای سنگ­های تراورتن مربوط به سنگ­هایی با رنگ کرم می­ باشد که کمی بیشتر از مقدار متوسط جهانی به‌دست آمد. مقدار میانگین EDR برای سنگ­های تراورتن کمی بیشتر از حد مجاز می­باشد. همچنین شار بتا در سنگ­های تراورتن کمتر از حد مجاز می­باشد. مقدار میانگین دانسیته شار پرتو بتا در هوای آزاد برابر صفر به‌دست آمد. در تمامی نمونه­ها میزان ED برابر صفر مشاهده گردید. مقدار پرتو زمینه در هوای آزاد شهر زاهدان در حد متوسط آن در دنیا می‌باشد.

 
 

کلیدواژه‌ها

عنوان مقاله [English]

Relationship Between Color and Natural Radioactivity of Travertine Stones Supplied in Zahedan

نویسنده [English]

  • Hadi Nakhzari Moghadam

Instructor, Department of Medical Physics, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran.

چکیده [English]

Abstract
Background and Aim: Humans in their environments are always exposed to radiation from radioactive materials in construction materials. Since humans are not far from these materials, the probability of radiation exposure is high. This is a dosimetric study of travertine stones used in Zahedan in 2020 to determine the relationship between stone color and radioactivity.
Materials and Methods: The building stones that existed and were used in Zahedan city were identified and listed. A total of 70 samples of travertine were analyzed by the MKS model pen dosimeter for determining gamma Dose Rate (EDR) as microsievert per hour, gamma Equivalent Dose (ED) as millisievert, and beta flux density as parts per square centimeter per minute (part/cm2.min).
Results: The highest mean EDR was in travertine rocks in cream color as 0.15 μSv/h and the lowest was 0.01 μSv/h in white rock. The highest mean beta flux density was observed in travertine rocks in the cream color sample as 0.0016 part/cm2.min. The ED value of all samples was determined to be zero.
Conclusion: The maximum amounts of EDR and beta flux for travertine rocks were related to cream-colored rocks, which were slightly higher than the global average. The average EDR for travertine rocks was slightly higher than the allowable limit. Also, the beta flux in travertine rocks was lower than the allowable limit. The mean value of beta beam flux density in the ambient air was zero. In all samples, the amount of ED was zero. The amount of background radiation in the ambient air of Zahedan was the global average.
 

کلیدواژه‌ها [English]

  • Dosimetry
  • Travertine
  • Zahedan
1.         Nakhzari Moghadam H,Farsizaban M, Kamali Mohammadzade M. Evaluation of Magnetic Field Intensity of Electricity Power Lines on Health in Zahedan Province, Iran. Pakistan Journal of Medical & Health Sciences. 2019;13(1):223-7.
2.         Shahbazi D. Measurement of natural background radiation in Chaharmahal and Bakhtiari province. Journal of Shahrekord University of Medical Sciences. 2002;4(3):21-6.
3.         Mertens CJ. Overview of the Radiation Dosimetry Experiment (RaD-X) flight mission. Space Weather. 2016;14(11):921-934. doi:10.1002/2016SW001399
4. Daniels RD, Kendall GM, Thierry-Chef I, Linet MS, Cullings HM. Strengths and Weaknesses of   Dosimetry Used in Studies of Low-Dose Radiation Exposure and Cancer. J Natl Cancer Inst Monogr. 2020;2020(56):114-132. doi:10.1093/jncimonographs/lgaa001 PMCID:PMC7667397
5.         Organization WH. Protection of the Public against Exposure Indoors due to Radon and Other Natural Sources of Radiation. Specific Safety Guide. 2015.
6.         Külahcı F, Aközcan S, Günay O. Monte Carlo simulations and forecasting of Radium-226, Thorium-232, and Potassium-40 radioactivity concentrations. Journal of Radioanalytical and Nuclear Chemistry. 2020:1-16. doi:https://doi.org/10.1007/s10967-020-07059-y. https://doi.org/10.1007/s10967-020-07059-y
7.         Reddy KVK, Reddy BS, Reddy BL. Natural background gamma radiation levels in dwellings constructed under the Double Bedroom Housing Scheme at Erravalli and Narasannapet model villages of Telangana state, India. Indoor and Built Environment. 2020;29(7):1038-44. doi:https://doi.org/10.1177/1420326X19865998. https://doi.org/10.1177/1420326X19865998
8.         Gong Y, Zhao D, Wang Q. An overview of field-scale studies on remediation of soil contaminated with heavy metals and metalloids: Technical progress over the last decade. Water research. 2018;147:440-60. doi:https://doi.org/10.1016/j.watres.2018.10.024. https://doi.org/10.1016/j.watres.2018.10.024
9.         Caetano, Ana Luisa et al. “Contribution for the derivation of a soil screening value (SSV) for uranium, using a natural reference soil.” PloS one vol. 9,10 e108041. 29 Oct. 2014, doi:10.1371/journal.pone.0108041.
10.       Dai, Dajun et al. “Confluent impact of housing and geology on indoor radon concentrations in Atlanta, Georgia, United States.” The Science of the total environment vol. 668 (2019): 500-511. doi:10.1016/j.scitotenv.2019.02.257
11.       Beinlich A, Austrheim H, Mavromatis V, Grguric B, Putnis CV, Putnis A. Peridotite weathering is the missing ingredient of Earth’s continental crust composition. Nature communications. 2018;9(1):1-12. doi:https://doi.org/10.1038/s41467-018-03039-9. https://doi.org/10.1038/s41467-018-03039-9
12.       Sarrou I, Pashalidis I. Radon exhalation from granite countertops and expected indoor radon levels. Journal of Radioanalytical and Nuclear Chemistry. 2017;311(1):913-6. doi:https://doi.org/10.1007/s10967-016-5108-7. https://doi.org/10.1007/s10967-016-5108-7
13.       Khoshnava, Seyed Meysam et al. “The Role of Green Building Materials in Reducing Environmental and Human Health Impacts.” International journal of environmental research and public health vol. 17,7 2589. 10 Apr. 2020, doi:10.3390/ijerph17072589
14.       Ruano-Ravina A, Kelsey KT, Fernández-Villar A, Barros-Dios JM. Action levels for indoor radon: different risks for the same lung carcinogen? : Eur Respiratory Soc; 2017. https://doi.org/10.1183/13993003.01609-2017
15. Lantz, Paula M et al. “Radon, smoking, and lung cancer: the need to refocus radon control policy.” American journal of public health vol. 103,3 (2013): 443-7. doi:10.2105/AJPH.2012.300926
16.       Abu-Samreh MM. Indoor Radon-222 concentration measurements during the summer season of year 2000 in some houses in the western part of Yatta city. Arabian Journal for Science and Engineering Section B: Engineering. 2005;30(2A):343-9.
17.       Wakeford R, Kendall GM, Little MP. The risk of cancer from natural background ionizing radiation. Health physics. 2009;97(6):637-8. doi:https://doi.org/10.1097/01.HP.0000363834.40051.f7. https://doi.org/10.1097/01.HP.0000363834.40051.f7
18.       Fathabadi N, Salehi AA, Naddafi K, Kardan MR, Yunesian M, Nodehi RN, et al. Radioactivity levels in the mostly local foodstuff consumed by residents of the high level natural radiation areas of Ramsar, Iran. Journal of environmental radioactivity. 2017;169:209-13. doi:https://doi.org/10.1016/j.jenvrad.2016.12.011. https://doi.org/10.1016/j.jenvrad.2016.12.011
19.       Rostampour N, Almasi T, Rostampour M, Mohammadi M, Ghazikhanlou Sani K, Khosravi HR, et al. An investigation of gamma background radiation in Hamadan province, Iran. Radiation protection dosimetry. 2012;152(4):438-43. doi:https://doi.org/10.1093/rpd/ncs062. https://doi.org/10.1093/rpd/ncs062
20.       Radiation UNSCotEoA. Sources and effects of ionizing radiation, ANNEX B, Exposures from natural radiation sources. UNSCEAR 2000 REPORT, New York. 2000;1:97-9. doi:NII Article ID (NAID): 10026742602. NII Article ID (NAID): 10026742602
21.       Sohrabi M, Babapouran M. New public dose assessment from internal and external exposures in low-and elevated-level natural radiation areas of Ramsar, Iran. International Congress Series. 2005;1276:169-74. doi:https://doi.org/10.1016/j.ics.2004.11.102. https://doi.org/10.1016/j.ics.2004.11.102
22.       Gholami M, Mirzaei S, Jomehzadeh A. Gamma background radiation measurement in Lorestan province, Iran. International Journal of Radiation Research September. 2011;9(2):89-93.
23.       Saghatchi F, Salouti M, Eslami A. Assessment of annual effective dose due to natural gamma radiation in Zanjan (Iran). Radiation protection dosimetry. 2008;132(3):346-9. doi:https://doi.org/10.1093/rpd/ncn285. https://doi.org/10.1093/rpd/ncn285
24.       Ajayi O. Environmental gamma radiation indoors at Akure, Southwestern Nigeria. Journal of environmental radioactivity. 2000;50(3):263-6. doi:https://doi.org/10.1016/S0265-931X(99)00098-3. https://doi.org/10.1016/S0265-931X(99)00098-3
25.       Tavakoli MB, Abdi MR, Moghadam HN, Hajialiani G, Mousavi SA. The Effect of the Color of Granite on its Natural Radioactivity. Journal of Isfahan Medical School. 2013;30(220):p2412-8.
26.       Al-Saleh FS, Al-Berzan B. Measurements of natural radioactivity in some kinds of marble and granite used in Riyadh region. J Nucl Radiat Phys. 2007;2(1):25-36.
27.       Bahreyni M, Yarahmadi M. Comparison of indoor and outdoor dose rates from environmental gamma radiation in Kurdistan province. Journal of Kerman University of Medical Sciences. 2009;16(3):255-62.
28.       Pavlidou S, Koroneos A, Papastefanou C, Christofides G, Stoulos S, Vavelides M. Natural radioactivity of granites used as building materials. Journal of environmental radioactivity. 2006;89(1):48-60. doi:https://doi.org/10.1016/j.jenvrad.2006.03.005. https://doi.org/10.1016/j.jenvrad.2006.03.005
29.      Malakootian M, Sadeghi M, Nasiri A. Evaluation of Gamma Rays in the Building Stones in Kerman (2013) . 2014; 13 (1) :13-21
30.      Tilki R, Yazdanifar A, Dosimetry of granite and marble used in Sari in terms of beta and gamma radiation in 2008, 12th National Health Conference.https://civilica.com/doc/82265