تعهد نامه

نوع مقاله : مقالات پژوهشی

نویسندگان

1 دانشگاه ازاد اسلامی اصفهان

2 گروه محیط زیست، دانشکده کشاورزی و منابع طبیعی، مرکز تحقیقات پسماند و پساب، دانشگاه آزاد اسلامی، خوراسگان (اصفهان)، ایران

3 کارشناسی ارشد عمران ، دانشگاه آزاد اسلامی واحد خمینی شهر

چکیده

چکیده
زمینه و هدف: افزایش غلظت فلزات سنگین سمی در محیط زیست، مخاطراتی را برای سلامتی انسان و موجودات زنده به‌دنبال داشته است. هدف از انجام این مطالعه بررسی تأثیر خصوصیات پشم‌سنگ در جذب نیکل (II) از محلول‌های آبی با استفاده از پسماند پشم‌سنگ می باشد.
مواد و روش­ها: ابتدا برخی خصوصیات پسماند پشم‌سنگ مانند pH، هدایت الکتریکی، pHZPC، ترکیب شیمیایی با استفاده از آنالیز­های پراش اشعه ایکس و فلوئورسانس اشعه ایکس و همچنین ساختار و ریخت­شناسی جاذب­ها با استفاده از میکروسکوپ الکترونی روبشی (SEM) تعیین شد. آزمایشات جذب به­صورت ناپیوسته با استفاده از محلول­های آزمایشگاهی حاوی نیکل انجام گرفت و شرایط بهینه جذب در اثر فاکتورهای مختلف pH، غلظت اولیه یون­های فلزی، زمان تماس و مقدار جاذب بر میزان جذب در سطوح مختلف مورد بررسی قرار گرفت. هم­چنین به منظور رسم نمودارهای هم­دما از ایزوترم­های لانگمویر و فروندلیچ استفاده شد.
یافته­ها: بیش­ترین میزان جذب با اختلاف معنی­داری در ۵=pH و کم­ترین مقدار آن در ۳=pH مشاهده شد. میزان جذب در غلظت ۵ میلی­گرم در لیتر محلول با اختلاف معنی­داری بیشتر از سایر غلظت­ها بود و کم­ترین میزان در غلظت­ ۱۰۰ میلی­گرم در لیتر مشاهده شد. کم­ترین میزان جذب نیکل با اختلاف معنی­داری در زمان ۵ دقیقه و بیش­ترین کارایی جذب در زمان ۹۰ دقیقه مشاهده شد. درصد جذب پسماند پشم‌سنگ در ۱۰ گرم در لیتر با اختلاف معنی­داری بیشتر از دیگر مقادیر جاذب و کم­ترین درصد جذب جاذب در ۱ گرم در لیتر مشاهده شد. برازش هم­دماهای جذب سطحی نشان داد که جذب نیکل توسط پسماند پشم‌سنگ با مدل فروندلیچ مطابقت داشت.
نتیجه­گیری: پسماند پشم‌سنگ می­تواند قابلیت حذف نیکل از پساب­های صنعتی را داشته باشد.

کلیدواژه‌ها

عنوان مقاله [English]

Survey of Nickel (II) Adsorption in Aqueous Solutions Using Rock Wool Waste

نویسندگان [English]

  • Mohammad Hadi Abolhasani 1
  • Niloofar Pirestani 2
  • Ali Eslami 3

1 islmaic azad university of esfehan

2 Department of Environment, Faculty of Agriculture and Natural Resources, Waste and wastewater Research Center, Islamic Azad University, Khorasgan, Isfahan, Iran

3 Master of Civil Engineering, Islamic Azad University, Khomeini Shahr Branch

چکیده [English]

Abstract
Background and Aim: Increasing levels of toxic heavy metals in the environment have led to risks to the health of humans and living organisms.
Materials and methods: First, some characteristics of rock wool including pH, EC, pHZPC, chemical composition, structure, and morphology were determined using XRD, XRF, and Scanning Electron Microscopy (SEM). Adsorbing tests were then conducted in a non-continuous reactor using synthetic solutions containing nickel. Optimum adsorption conditions were determined concerning pH, metal initial concentration, contact time, and adsorbent dose. The data were analyzed in a completely randomized block design.
Results: The highest adsorption was seen at pH = 5 and the lowest at pH = 3, with a significant difference. The absorption rate was significantly higher in the 5 mg/l solutions than in other concentrations and the lowest was observed at 100 mg/l concentration. The lowest nickel adsorption rate was observed in 5 min and the highest adsorption efficiency was observed in 90 min, with a significant difference. The adsorption percentage of rock wool waste at the 10 g/l doses was significantly higher than that in other adsorbent doses and the lowest adsorption percentage was observed at the 1 g/l dose. The isotherm studies showed that the adsorption of nickel by rock wool waste was consistent with the Freundlich model.
Conclusion: It can be concluded that rock wool waste could remove nickel from industrial effluents.
 
 

کلیدواژه‌ها [English]

  • Rock wool waste
  • Nickel(II) adsorption
  • Isotherm
1-Zhanga, H, Huanga, F, Lick, DL, Shia, P., 2015, Highly efficient removal of Cr(VI) from wastewater via adsorption with novel magnetic Fe3O4@C@MgAl-layered double-hydroxide, Chinese Chemical Letters, vol. 26, pp.1137–1143.
2- Shakeri A., 2015, Determination of the Origin and Phenomenon Potential in Contaminated Soils in Oil Fields, Bushehr Province, Iran. Engineering Geology Journal, 2675-2696. [In Persian]
3- Shakeri, A., Shakeri, R., Mehrabi, B., 2015, Investigation of Contamination of Chromium, Nickel, Arsenic and Chromium in Water, Sediment and Fish Shahid Rajaee Dam of Mazandaran, North of Iran, Ecology, 41, 1, 24-13. [In Persian]
4- Qavidel, A, Moatar, F, 2014, Investigation of lead, zinc and nickel in river basins of Anzali wetland River study (Goharrood), Environmental science and technology, 1393, 96-89. [In Persian]
5-Zhao, P., 2009, Removal of lead from aqueous solutions by vermiculite. Faculty of Engineering, University of Regina, Regina, Saskatchewan.
6-Talout, H.A., EI def vows, NM., Abulnour, AG., and Hani, HA., 2011, International Conference On Environmental Science and Technology.
7-luoto, K., Holopainen, M., Kangas, J., Pentti, S. and Kai., 1998, Dissolotion of Short and Long Rockwool and Glasswool Fibers by Machrophages in flowthrough Cell Culture., Environmental Research, vol. 78, pp. 25-37.
8-Pfretzschner, J, Rodriguez, RM., 1999, Acoustic properties of rubber crumbs, Polymer Testing., vol. 18(22), pp. 81-92.
9-Thanh, Dong, Nguyen, a, Pavel, Novák, b, Jana, Vejpravova, c, Hong, Nguyen, Vu, b, Jaromír, Lederer, a, Tasnim, Munshi, 2018, Removal of copper and nickel from water using nanocomposite of magnetic hydroxyapatite nanorods, Journal of Magnetism and Magnetic Materials, vol. 456, pp. 451-460.
10-Yixin, Zhang, Jixiang, Dong, Fanhui, Guo, Zhongye Shao, Jianjun Wu, 2018, Zeolite Synthesized from Coal Fly Ash Produced by a Gasification Process for Ni2+ Removal from Water, Minerals, vol. 8, 3, pp. 2-14.
11- Sa'ati, Zohreh, Shougerzadeh, Mahmoud, 2013, The kinetic and thermodynamic study of nickel adsorption (II) by silica nanocomposite anroglycarbon-active, Journal of Environmental Science and Technology, Volume 20, Number 4, 1-11. [In persian]
12- Faghani, Hosein ali, Heshmati janat magham, Abbas, Investigation of phenol pigment removal using magnetite nanobacterium from  aqueous solution, journal of soil and water protection research, 1397, 25(6) : 105-121. [In persian]
13- ‌Bafkar, Ali, Baboli, Neda, Effect of nitrate removal from aqueous solution using oak leaf nano structure adsorbent, journal of soil and water protection research, 1397, 25(5) : 233-247.[In persian]
14-Kumar, H, Rni, R., 2013, Structural Characterization of Silver Nanoparticles Synthesized by Micro emulsion Route, International Journal of Engineering and Innovative Technology (IJEIT), vol. 3, pp. 2277-3754.
15-Osasona, I., Aiyedatiwa, K., Johnson, J., Faboya, O.L., 2018, Activated Carbon from Spent Brewery Barley Husks for Cadmium Ion Adsorption from Aqueous Solution, Indonesian Journal of Chemistry, vol. 18, pp. 145 - 152.
16-Huang, Y., Zhao, R., Liu, W., Li, Y., Zhang, P., Wang, Sh., Wang, L., 2018, Using pretreated chestnut endothelium to adsorb lead and cadmium ions from water, Saudi Journal of Biological Sciences, vol. 25, pp. 1154- 1162.
17- Malek, A., Farooq, S. 1996. Comparison of isotherm models for hydrocarbon adsorption on activated carbon. AIChE  Journal, Vol. 42, pp. 3191– 3201.
18-Hall, K., Eagleton, R., Acrivos, L., Vermeulen, A., 1996, Pore and solid diffiusion kinetics for fixed-bed adsorption under Constant- Pattern Condition, Industrial & Engineering Chemistry fundamentals, vol.5, pp. 212-223.
19-Roop, Ch.B., Goyal, M., 2005, Activated Carbon Adsorption, CRC Press, pp.497.
20-Rinkumoni, Borah, Deepa, Kumari, Anindita, Gogoi, Sunayana, Biswas, Ritusmita, Goswami, Jaehong, Shim, Naznin, Ara, Begum, Manish, Kumar, 2018, Efficacy and field applicability of Burmese grape leaf extract(BGLE) for cadmium removal An implication of metal removal from natural water, Ecotoxicology and Environmental Safety, vol. 147, pp. 585–593.
21- Febrianto, J., Kosasih, A.N., Sunarso, J., Yi-Hsu, J., Indraswati, N., and Ismadji, S. 2009. Equilibrium and kinetic studies in adsorption of heavy metals using biosorbent: a summary of recent studies. Journal of Hazardous Materials, Vol. 162, pp. 616-645.
22-Essington, ME., 2004, Soil and water Chemistry An Intergrative Approach. CRC Press, Boca Ration, Florida.
23- Namasivayam C, Kavitha D. 2005. "Adsorptive removal of 2,4-dichlorophenol from aqueous solution by low-cost carbon from an agricultural solid waste: coconut coir pith", Sep. Sci. and Tech., Vol39,pp.1407-1425.
24- Tan IAW, Ahmad AL, Hameed BH. 2008. "Adsorption of basic dye on high surface-area activated carbon prepared from coconut husk: Equilibrium, kinetic and thermodynamic studies", J.Hazard. Mater., Vol 154, pp. 337-346.
25- Sen Gupta S, Bhattachryya KG. 2011. "Kinetivcs of adsorption of metal ions on inorganic materials: A rewiew" ,Adv. Colloid and interface Sci., Vol 162,pp.39-58.
26- Ho YS, Mckay G. 1998. "Sorption of dye from aqueous solution by peat" Chem. Eng. J., Vol 70,pp.115-124.
27- Ho YS. 2004. "Citation review of Lagergren kinetic rate equation on adsorption reaction",Scientometrics, Vol 59, pp.171-177.
28- Ho YS. 2006. "Review of second-order models for adsorption systems", J. Hazard. Mater, Vol 136, pp.103-111.
29- Erdem, E., Karapinar, N., Donat, R, 2004, The removal of heavy metal cations by natural zeolites, Journal of Colloid and Interface Science, vol. 280, pp. 309–314.
30- Gholami, Zeinab, Hooshmand, Abdolrahim, Naseri, Abdolali, Pourreza, Nahid, 2015, Removal of nickel and cadmium from contaminated water using bagasse nanoparticles, drinking water science and engineering, Shahid Chamran University of Ahvaz, Vol. 36 (2) 97-107. [In persian]
31- Saadati, Zohreh, Shogarzadeh, Mahmoud, 2015, Kinetic and thermodynamic studies of nickel (II) adsorption by activated carbon silica nanocomposite, Journal of Environmental Science and Technology, Volume 20, Number 4, 11-1. [In persian]
32- Heidari, Aghdas, Younesi, Habibollah, Mehraban, Zahra, 2010, Removal of lead, nickel and cadmium ions from aqueous solutions using modified MCM-41 nanocomposite, Journal of Water and Wastewater, Volume 21, Number 1, 33-25. [In persian]
33- Muhamad, Norfazilah, Norfazliana, Abdullah, Mukhlis, A., Rahman, Khairul, Hamimah Abas, Azian, Abd Aziz, Mohd, Hafiz, Dzarfan, Othman, Juhana, Jaafar, Ahmad, Fauzi Ismail, 2018, Removal of nickel from aqueous solution using supported zeolite-Y hollow fiber membranes, Environmental science and pollution research, vol. 25, pp.19054-19064.
34- linglin, Zhuo, Rongrong, Li, Guilong Zhang, Dongfang Wang, Dongqing Cai, Zhengyan Wu, 2018, Zero-valent iron nanoparticles supported by functionalized waste rock wool for efficient removal of hexavalent chromium, Chemical Engineering Journal, vol. 339, pp.85-96.
35- Amilton, Barbosa Botelho Junior, David B., Dreisinger, Denise C. R. Espinosa, 2019, A Review of Nickel, Copper, and Cobalt Recovery by Chelating Ion Exchange Resins from Mining Processes and Mining Tailings, Mining Metallurgy and Exploration, vol. 36, pp. 199-213.
36- El-Ashtoukhy, ESZ., Amin, NK. and Abdelwahab, O. 2008. "Removal of lead(II) and copper(II)from aqueous solution using pomegranate peel as a new adsorbent", Desalination, 223: 162-173.
37- Aloma, Martin-Lara, Rodriguez, Blaquez, Calero, 2012, Removal of nickel(II) ions from aqueous solutions by biosorption on sugarcane bagasse, Journal of the Taiwan Institute of Chemical Engineers, 2012, Vol. 43, pp. 275-281.
38- Mandu, Inyang, Bin, Gao, Ying, Yao, Yingwen, Xue, Andrew, Zimmerman, Pratap, Pullammanappallil, Xinde, Cao, 2012, Removal of heavy metals from aqueous solution by biochars derived from anaerobically digested biomass, Bioresource Technology, vol. 110, pp. 50-56.
39- Ding, Zhuhong, Xin, Hu, Yongshan Wan, Shengsen, Wang, Bin, Gao, 2016, Removal of lead, copper, cadmium, zinc, and nickel from aqueous solutions by alkali-modified biochar: Batch and column tests, Journal of Industrial and Engineering chemistry, vol. 33, pp. 239-245.
40- Mungapati VS, Yarramuthi V, Nedavala SJ, Alla SR, Abburi K. 2010. “Biosorption of Cu(U), Cd(U) Pb(U) by Acacia leucocephala bark powder Kinetics, equilibrium and thermodynamics.” Chemical Engineering J., 157, (2-3), 357-365.
41- Ho YS, McKay G. 1999. "Pseudo-second order model for sorption processes", Process Biochem., Vol. 34, pp. 451-465.
42- Al Dwairi RA, Al-Rawajfeh A. Removal of cobalt and nickel from wastewater by using Jordan low-cost zeolite and bentonite. Journal of the university of chemical technology and metallurgy. 2012 Mar 1;47(1):69-76.