نوع مقاله : مقالات پژوهشی
نویسندگان
1 فارغ التحصیل دکترای علوم خاک، گروه علوم خاک، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران
2 گروه علوم خاک دانشگاه علوم کشاورزی و منابع طبیعی گرگان
3 استاد گروه علوم خاک، گروه علوم خاک ، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران
4 دانشیار گروه علوم خاک، گروه علوم خاک ، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران
چکیده
زمینه و هدف: افزایش فعالیتهای کشاورزی و به دنبال آن رهاسازی آلایندهها از سامانههای کشاورزی و همچنین گسترش صنایع سبب ورود یونهای فلزهای سنگین از جمله کادمیوم و سرب به محیط زیست میشود. کاربرد جاذبها از روشهای مناسب برای ناپویاسازی فلزهای سنگین در خاکهای آلوده میباشند. این پژوهش با هدف بررسی اثر اصلاحکنندههای آلی و معدنی بر زیست فراهمی سرب و کادمیوم در طول زمان انکوباسیون در خاک انجام گردید.
مواد و روشها: تیمارها آزمایش شامل کاربرد سه سطح (0، 1 و 5 درصد وزنی) اصلاحکنندههای آلی (بیوچار 640 و بیوچار 420)، اصلاحکنندههای معدنی (زئولیت، بنتونیت، لیکا و پومیس) و دو زمان (90 و 180 روز) به صورت فاکتوریل در قالب طرح کاملا تصادفی در سه تکرار بود. در پایان زمان انکوباسیون زیست فراهمی سرب و کادمیوم با روش DTPA و EDTA تعیین شد.
یافتهها: نتایج نشان داد گذشت زمان باعث افزایش زیست فراهمی سرب و کادمیوم عصارهگیری شده با DTPA گردید. همچنین، افزودن بیوچار 640 ، بنتونیت و سطح 5 درصد زئولیت سبب کاهش مقدار سرب عصارهگیری شده با EDTA گذشت زمان شدند بیشترین میزان کاهش سرب عصارهگیری شده با EDTAبا گذشت زمان در سطح 1 درصد بیوچار 640 مشاهده گردید. کاربرد اصلاحکنندههای آلی (بیوچار 640 و 420) و معدنی (پومیس، لیکا، زئولیت و بنتونیت) سبب افزایش مقدار کادمیوم عصارهگیری شده با EDTA با گذشت زمان شدند.
نتیجهگیری: اصلاحکنندههای آلی بدلیل ظرفیت تبادل کاتیونی و کربن آلی بالایی که نسبت به اصلاحکنندههای معدنی دارند، در تثبیت فلزات موثرتر بودند.
کلیدواژهها
عنوان مقاله [English]
Investigate the Effect of Organic and Inorganic Amendments on Lead and Cadmium Bioavailability in calcareous soils
نویسندگان [English]
- Somayeh Sefidgar Shahkolaie 1
- Mojtaba Barani Motlaq 2
- Farhad Khormali 3
- Esmael Dordipour 4
1 PhD Graduated, Department of Soil Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.
2
3 Prof., Department of Soil Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.
4 Associate Prof., Department of Soil Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.
چکیده [English]
Background and purpose: Increasing agricultural activities and subsequently releasing pollutants from agricultural systems as well as expanding industries cause heavy metals (lead and cadmium) to enter the environment. Application of amendments are suitable methods for the inactivation of heavy metals in contaminated soils.
Materials and methods: In order to study the effect of organic amendments (bichar 640 and 420) and inorganic amendments (zeolite, bentonite, leca and pumice) on bioavailability of Pb and Cd during incubation time in a calcareous soil, a factorial experiment was conducted in a completely randomized design with 3 levels of amendments application in soil (0, 1 and 5 %) in three replications. Bioavailability of Pb and Cd in soil was determined using DTPA and EDTA- extractable during 90- and 180-days incubation time.
Results: Results showed that concentration of DTPA-extractable Pb and Cd increased during the time. Application of biochar 640, bentonite and zeolite (5%) decreased concentration of EDTA-extractable Pb during the incubation time. Application of biochar (1%) were the most effective treatment in decreasing Pb concentration EDTA-exchangeable. Application of the organic amendments (biochar 640 and biochar 420) and inorganic amendments (pumice, leca bentonite, and zeolite) increased concentration of EDTA-extractable Cd during the incubation time. Application of 5% of zeolite showed the lowest increasing concentration of EDTA-extractable Cd during the incubation time.
Conclusion: Organic amendments were more efficient in immobilization of Cd and Pb than the inorganic amendments. These results might due to the high amount of organic carbon and cation exchange capacity of the organic amendments than the inorganic amendments.
کلیدواژهها [English]
- Organic and inorganic amendments
- Bioavailability
- Lead
- Cadmium
- Schutz T, Dolinska S, Mockovciakova A. Characterization of bentonite modified by manganese oxides. Univers. J. Geosci 2013; 1(2): 114–119.
- Abduolrahimi S, Ghorbanzadeh N, Ramezanpuor H, et al. Efficiency of Natural and Modified Bentonite and Rice Husk on Immobilization of Cadmium and Its Effect on Some Biological Properties of Soil. Journal of Water and Soil 2018; 32: 169-183. [Persian]
- Bradl H. Sources and origins of heavy metals. Int. Sci. Technol 2005: 6: 1-27.
- Fayiga AO Ma LQ. Using phosphate rock to immobilize metals in soil and increase arsenic uptake by hyperaccumulator Pteris vittata. Sci. Total Environ 2006;359: 17-25.
- Neto AFA, Vieira MGA, Silva MGC. Cu (II) adsorption on modified bentonitic clays: different isotherm behaviors in static and dynamic systems. Materials Research 2012; 15(1): 114-124.
- Kumpiene J, Ore S, Renella G, et al. Assessment of zerovalent iron for stabilization of chromium, copper, and arsenic in soil. Environmental Pollution 2006; 144(1): 62-69.
- Hartley W, Lepp N. Remediation of arsenic contaminated soils by CaO application, evaluated in terms of plant productivity, arsenic and phytotoxic metal uptake. Sci Total Environ 2008; 390: 35-44.
- Judy Z, Movahedi Naeini SAR. Effects of leca, zeolite and compost on soil moisture and evaporation. J Agri Sci Nat Res 2007; 14 (2). [Persian]
- Mohammadi-Kalhori E, Yetilmezsoy K, Uygur N. Modeling of adsorption of toxic chromium on natural and surface modified lightweight expanded clay aggregate (LECA). Appl. Surf. Sci 2013; 287:428– 442.
- Abedi-Koupai J, Mollaei R, Eslamian S. The effect of pumice on reduction of cadmium uptake by spinach irrigated with wastewater. Echo. Hydrobiol 2015; 15: 208-214.
- McBride MB. Environmental Chemistry of Soils. Oxford University Press, Inc., New York. 1994.
- Ajmal M, Rao RAK, Anwar S, et al. Adsorption studies on rice husk: removal and recovery of Cd (II) from wastewater. Bioresour. Technol 2003;86: 147–149.
- Ahmad M, Lee SS, Lim JE, et al. Speciation and phytoavailability of lead and antimony in a small arms range soil amended with mussel shell, cow bone and biochar: EXAFS spectroscopy and chemical extractions. Chemosphere 2014; 95:433–441.
- Lu K, Yang X, Shen J, et al. Effect of bamboo and rice straw biochars on the bioavailability of Cd, Cu, Pb and Zn to Sedum plumbizincicola. Agric Ecosyst Environ 2014; 191:124–132.
- Gu HH, Zhan SS, Wang SZ, et al. Silicon-mediated amelioration of zinc toxicity in rice (Oryza sativaL.) seedlings. Plant Soil 2012; 350: 193–204.
- Kim HS, Kim KR, Kim HJ, et al. Effect of biochar on heavy metal immobilization and uptake by lettuce (Lactuca sativa L.) in agricultural soil. Environ Earth Sci 2015; 74:1249–1259.
- Yuan JH, Xu RK, Zhang H. The forms of alkalis in the biochar produced from crop residues at different temperatures. Bioresour. Technol 2011; 102:3488–3497.
- Sefidgar Shahkolaie S, Baranimotlagh M, Dordipour E, et al. Effects of inorganic and organic amendments on physiological parameters and antioxidant enzymes activities in zea mays L. from a cadmium-contaminated calcareous soil. South African Journal of Botany 2020; 128:132-140.
- Zhang RH, Li ZG, Liu XD, et al. Immobilization and bioavailability of heavy metals in greenhouse soils amended with rice straw-derived biochar. Ecological Engineering 2017; 98:183–188.
- Shen Z, Hou D, Zhao B, Xu W, et al. Stability of heavy metals in soil washing residue with and without biochar addition under accelerated ageing. Science of the Total Environment 2018; 619–620:185–193.
- Shahmoradi S, Afyuni M, Hajabbasi MA, et al. The Effect of Zeolite and Bentonite on the Bioavailability of Zinc, Cadmium and Lead in a Contaminated Soil under Sunflower Cultivation.J. Water and Soil Sci (Sci. & Technol. Agric. & Natur. Resour.) 2017; 21(2), 165-173. [Persian]
- Lahori A, Mierzwa-Hersztek M, Demiraj E, et al. Direct and residual impacts of zeolite on the remediation of harmful elements in multiple contaminated soils using cabbage in rotation with corn. Chemosphere 2020; 250:126317.
- Day PR. Particle fractionation and particle-size analysis. In: Black, C.A. (Ed), Method of soil analysis. Part I. Agronomy 9, Soil Science Society. America. Madison, WI. 1955; Pp. 545-567.
- Chi CM, Wang ZC. Characterizing salt-affected soils of Songnen plain using saturated paste and 1:5 soil-to-water extraction methods. Arid Land Research and Management2010; 24(1): 1-11.
- Walkley A, Black IA. An examination degtijarf method for determination for role organic matter and proposed modification of the chromic acid titration method. Soil Sci 1934; 37:29–38.
- Nelson RE. Carbonate and gypsum. In A. L. Page (ed.) Methods of soil analysis. Part 2. 2nd ed. Agron. Monogr. 9. ASA and SSSA, Madison, WI. 1982.
- Chapman HD. Cation exchange capacity. In: Methods of Soil Analysis. Part II. Black, C. A. (Ed). American Society of Agronomy, Madison, WI, USA. 1965.
- Chen M, Ma L. Comparison of three aqua regia digestion methods for twenty Florida soils. Soil Sci. Soc. Am. J 2001; 65:499–510.
- Lindsay WL, Norvell WA. Development of a DTPA soil test for Zn, Fe, Mn, and Cu. Soil Sci. Soc. Am. J 1978; 42:421-428.
- Kosson DS, Van der Sloot HA, Sanchez F, et al. An integrated framework for evaluating leaching in waste management and utilization of secondary materials. Environ. Eng. Sci 2002; 19:159–204.
- Qiao Y, Wu J, Xu Y, et al. Remediation of cadmium in soil by biochar-supported iron phosphate nanoparticles. Ecol Eng 2017; 106:515–522.
- Lu K, Yang X, Gielen G, et al. Effect of bamboo and rice straw biochars on the mobility and redistribution of heavy metals (Cd, Cu, Pb and Zn) in contaminated soil. J. Environ. Manage 2017; 186:285-292.
- Ramzani PM, Coyne MS, Anjum S, et al. In situ immobilization of Cd by organic amendments and their effect on antioxidant enzyme defense mechanism in mung bean (Vigna radiata L.) seedlings. Plant Physiol Biochem 2017; 118: 561-570.
- Puga AP, Melo LC, Abreu CA, et al. Leaching and fractionation of heavy metals in mining soils amended with biochar. Soil and Tillage Research 2016; 164:25–33.
- Huang H, Yao W, Li R, et al. Effect of pyrolysis temperature on chemical form, behavior and environmental risk of Zn, Pb and Cd in biochar produced from phytoremediation residue. Bioresource Technology 2018; 249:487–493.
- Hamid Y, Tang L, Yaseen M, et al. Comparative efficacy of organic and inorganic amendments for cadmium and lead immobilization in contaminated soil under rice wheat cropping system. Chemosphere 2018, 10.1016/j.chemosphere.2018.09.113.
- Kiran YK, Barkat A, Xiao-qiang C, et al. Cow manure and cow manure-derived biochar application as a soil amendment for reducing cadmium availability and accumulation by Brassica chinensis L. in acidic red soil. J Integr Agric 2017; 16(3):725–734.
- Garau G, Castaldi P, Santona L, et al. Influence of red mud, zeolite and lime on heavy metal immobilization, culturable heterotrophic microbial populations and enzyme activities in a contaminated soil. Geoderma 2007; 142:47–57.
- Baghaie AH.Effect of municipal waste compost and zeolite on reduction of cadmium availability in a loamy soil (A case study: Arak municipal waste compost). J. of Soil Management and Sustainable 2016; 6 (4), 103-117. [In Persian]
- Hamidpour MM, Afyuni M, Kalbasi AH, et al. Mobility and plant availability of Cd (II) and Pb (II) adsorbed on zeolite and bentonite. Appl Clay Sci 2010; 48:342-348.
- Meng J, Tao M, Wang L, et al. Changes in heavy metal bioavailability and speciation from a Pb-Zn mining soil amended with biochars from co-pyrolysis of rice straw and swine manure. Sci Total Environ 2018; 633:300–307.
- Bian RJ, Joseph S, Cui LQ, et al. A three-year experiment confirms continuous immobilization of cadmium and lead in contaminated paddy field with biochar amendment. J Hazard Mater 2014; 272:121–128.
- Bashir S, Zhu J, Fu Q, et al. Cadmium mobility, uptake and anti-oxidative response of water spinach (Ipomoea Aquatic) under rice straw biochar, zeolite and rock phosphate as amendments. Chemosphere 2017. 10.1016/j.chemosphere.2017.11.162.