تعهد نامه

نوع مقاله : Research Paper

نویسندگان

1 دانشگاه تهران

2 مرکز پژوهش‌های کاربردی سازمان زمین شناسی و اکتشافات معدنی

3 انستیتو علوم مهندسی شیمی، سازمان تحقیقات و تکنولوژی، هالاس، یونان

چکیده

زمینه و هدف: ذرات غبار اتمسفری نقش قابل توجهی در انتقال عناصر شیمیایی رهاشده از منابع صنعتی و شهری دارند. بطوری‌که آلاینده‌های متصل به این ذرات می‌توانند طی مسافت‌های طولانی منتقل شده و به عنوان تابعی از شرایط هواشناسی، خصوصیات فیزیکی و شیمیایی ذرات و طبیعت سطح هستند. هدف از مطالعه حاضر ارزیابی غنای فلزی و درجه آلودگی فلزات سنگین در غبار ترسیب‌شده اتمسفری شهر تهران بود.
مواد و روش‌ها: نمونه‌های غبار از 8 نقطه از شهر تهران در سال 1397 برداشت شد. فلزات سنگین (سرب، روی، مس، نیکل، کروم، منگنز و آلومینیوم) در این ذرات با استفاده از دستگاه ICP-MS آنالیز شد. غنای فلزات و درجه آلودگی با استفاده از شاخص‌های فاکتور غنی‌شدگی (EF)، انباشت زمینی (Igeo)، درجه آلودگی (Cd) و درجه آلودگی اصلاح‌شده (mCd) تعیین شد. از آزمون‌های تی جفتی، همبستگی پیرسون و تجزیه خوشه‌ای سلسله مراتبی جهت تحلیل استفاده شد.
یافته‌ها: روند میانگین غلظت عناصر در فصل گرم و سرد مشابه و به صورت آلومینیوم>روی>منگنز>سرب>مس>کروم>نیکل بود. نتایج شاخص‌ غنی‌شدگی در نمونه‌های غبار ترسیب‌شده اتمسفری نشان داد که عناصر سرب و روی در فصل گرم و سرب و مس در فصل سرد دارای غنی‌شدگی شدید بودند. نتایج آزمون تی جفتی تفاوت معنی‌داری را بین عناصر مس وکروم بین فصول نشان داد. آزمون تجزیه خوشه‌ای نیز عنصر آلومینیوم را با منشأ طبیعی و بقیه عناصر را با منشأ انسانی نشان داد.
نتیجه‌گیری: نتایج این مطالعه نشان داد که غبار ترسیب‌شده اتمسفری شهر تهران دارای سطوح بالایی از آلودگی بخصوص در فصل سرد است. لذا لزوم تدوین سیاست‌هایی مدون و کاربردی‌تر جهت ارتقای کیفیت هوای شهر تهران ضروری به‌نظر می‌رسد.

کلیدواژه‌ها

عنوان مقاله [English]

Characterization and source identification of heavy metals in atmospheric deposited dust of Tehran in 2018

نویسندگان [English]

  • Mohammad Saleh Ali Taleshi 1
  • Mazaher Moeinaddini 1
  • Sadat Feiznia 1
  • Reza Shahbazi 2
  • Stefania Squizzato 3

1 University of Tehran

2 Geological Survey of Iran (GSI)

3 Institute of Chemical Engineering Sciences, Foundation of Research and Technology – Hellas, Greece

چکیده [English]

Background and purpose: Atmospheric dust particles play a significant role in the transfer of chemical elements released from industrial and urban sources. So that the contaminants attached to these particles, can be transported over long distances and are as a function of meteorological conditions, the physical and chemical properties and nature of surface. The aim of this study was to evaluate the metal richness and degree of heavy metal contamination in atmospheric deposited dust in Tehran.
Material and methods: Atmospheric dust samples were collected from eight locations in Tehran in 2018. Heavy metals (Pb, Zn, Cu, Ni, Cr, Mn and Al) were analyzed in dust using ICP-MS. Metal richness and degree of contamination were determined using Enrichment Factor (EF), Geoaccumulation Index (Igeo), degree of Contamination (Cd) and modified degree of contamination (mCd). Paired t-test, Pearson correlation and Hierarchical cluster analysis (HCA) were also used for analysis.
Results: The mean concentration trend of elements in the warm and cold seasons was similar as Al>Zn>Mn>Pb>Cu>Cr>Ni. Results of enrichment factor index in atmospheric deposited dust showed that Pb and Zn in warm season and Pb and Cu in cold season were highly enriched. Paired t-test results showed a significant difference between Cu and Cr between seasons. Cluster analysis also showed Al of natural origin and other elements of anthropogenic origin.
Conclusion: The results of this study showed that atmospheric deposited dust particles of Tehran have high levels of contamination especially in cold season. Therefore, it is necessary to formulate more effective and practical policies to improve Tehran’s air quality.

کلیدواژه‌ها [English]

  • Source identification
  • Enrichment factor
  • Heavy metals
  • Atmospheric deposited dust
  • Tehran
  1. Huang S, Tu J, Liu H, Hua M, Liao Q, Feng J, et al. Multivariate analysis of trace element concentrations in atmospheric deposition in the Yangtze River Delta, East China. Atmospheric Environment. 2009; 43:5781-5790.
  2.  Fang GC, Wu YS, Rao JY, Huang SH. Characteristic study of dry deposition, concentration, compositions for particulates mass and ionic species during summer and autumn season at a traffic sampling site. Environmental monitoring and assessment. 2006; 122:259-273.
  3. Chu CC, Fang GC, Chen JC, Yang IL. Dry deposition study by using dry deposition palte and water surface sampler in Shalu, central Taiwan. Environmental monitoring and assessment. 2008; 146: 441-451.
  4. Valigura RA, Winston TL, Artz RS, Hicks BB. Atmospheric nutrient input to coastal areas educing the uncertainties. NOAA Coastal Ocean Program Decision Analysis Series No. 9; 1996.
  5. Park SU. The effect of dry deposition on the groundlevel concentration. Journal of Korean Meteorological Society. 1995; 31: 97–115.
  6. Connan O, Maro, D, Hebert, D, Roupsard P, Goujon R, Letellier B, et al. Wet and dry deposition of particles associated metals (Cd, Pb, Zn, Ni, Hg) in a rural wetland site, Marias Veinier, France. Atmospheric Environment. 2013; 67: 394-403.
  7. Arimoto R, Ray BJ, Lewis NF, Tomza. Mass-particle size distribution of atmospheric dust and the dry deposition of dust to the remote ocean. Journal of Geophysical research. 1997; 15: 867-874.
  8. Shi Z, Shao L, Jones TP, Lu S. Microscopy and mineralogy of airborne collected during severe dust storm episodes in Beijing, China. Journal of Geophysical research. 2005; 110:1-10.
  9. Fang GC, Chang CN, Wu YS, Fu PPC, Yang CJ, Chen CD, et al. Ambient suspended particulate matters and related chemical species study in central Taiwan, Taichung during 1998–2001. Atmospheric Environment. 2002; 36: 1921–1928.
  10. Willers S, Gerhardsson L, Lundh T. Environmental tobacco smoke (ETS) exposure in children with asthma-relation between lead and cadmium, and cotinine concentrations in urine. Respiratory Medicine. 2005; 99:1521–1527.
  11. Amato F, Pandolfi M, Viana M, Querol X, Alastuey A, Moreno T. Spatial and chemical patterns of PM10 in road dust deposited in urban environment. Atmospheric Environment. 2009;43:1650–1659.
  12. Ogulei D, Hopke PK, Zhou L, Pancras JP, Nair N, Ondov JM. Source apportionment of Baltimore aerosol from combined size distribution and chemical composition data. Atmospheric Environment. 2006; 40: S396–S410.
  13. Al-Khashman OA. Heavy metal distribution in dust, street dust and soils from the work place in Karak Industrial Estate, Jordan. Atmospheric Environment. 2004. 38: 6803–6812.
  14. Ahmadi Doabi S, Afyuni M, Karami M. Multivariate statistical analysis of heavy metals contamination in atmospheric dust of Kermanshah province, western Iran, during the spring and summer 2013. Journal of Geochemical Exploration. 2017;180:61-70.
  15. Ali MU, Liu G, Yousaf B, Abbas Q, Ullah H, Munir MAM, et al. 2017. Pollution characteristics and human health risks of potentially (eco) toxic elements (PTEs) in road dust from metropolitan area of Hefei, China. Chemosphere. 2017; 181: 111–121.
  16. Thorpe A, Harrison RM. Sources and properties of non-exhaust particulate matter from road traffic: A review. Science of the Total Environment. 2008;400:270-282.
  17. Fauser P. Particulate air pollution with emphasis on traffic generated aerosols. Riso, 1999.
  18. Schauer JJ, Lough GC, Shafer MM, Christensen W, Arndt MF, DeMinter JT, et al. Characterization of metals emitted from motor vehicles. Health Effects Institute. 2006; 88.
  19. McKenzie ER, Money JE, Green PG, Young TM.  2009. Metals associated with stormwater-relevant brake and tire samples. Science of the Total Environment. 2009; 407: 5855– 5860.
  20. Gope M, Ebhin Masto R, George J, Balachandran. Tracing source, distribution and health risk of potentially harmful elements (PHEs) in street dust of Durgapur, India. Ecotoxicology and Environmental Safety. 2018;154:280-293.
  21. Pierson WR, Brachaczek WW. Particulate matter associated with vehicles on the road, II. Aerosol Sci. Technol. 1993; 4:1–40.
  22. Amini H, Taghavi-shahri SM, Henderson SB, Naddafi K, Nabizadeh R, Younesian M. Land use regression models to estiate the annual and seasonal spatial variability of sulfure oxide and particulate matter in Tehran, Iran. Science of the Total Environment. 2014; 488-489:343-353.
  23. Mazloomi S, Esmaeili-Sari A, N Bahramifar, Moeinaddini M. Assessment of the metals and metalloids level in street dust of the east and west of Tehran. Iran J Health & Environ 2017; 10:281-292 (In Persian).
  24. Goossens D, & Offer ZY. (2000). Wind tunnel and field calibration of six aeolian dust samplers. Atmospheric Environment. 2000; 34(7):1043-1057.
  25. Reheis M. Dust deposition and its effect on soils- A progress report. U.S. Geological survey professional paper, 1598.

26. Shi D, Lu X. Accumulation degree and source apportionment of trace metals in smaller than 63 μm road dust from the areas with different land uses: A
case study of Xi'an, China. Science of the Total Environment. 2018;636:1211-1218.

  1. APHA, AWWA, WEF. Standard Methods for the Examination of Water and Wastewater. 21st ed. American Public Health Association, Washington, DC, USA, 2005.
  2. Taylor SR, McLennan SM. The Geochemical Evolution of the continental crust. Reviewo of Geophysics.1995; 32:241-265.
  3. Sistani N, Moeinaddini M, Ali-Taleshi MS, Khorasani N, Hamidian AH, Azimi Yancheshmeh R. Source identification of heavy metal pollution nearby Kerman steel industries. Journal of Natural Environment. 2017; 19:316-327 (In Persian).
  4. Hakanson L. Ecological risk index for aquatic pollution control, a sediment logical approach. Water Res. 1980; 14:975-1001.
  5. Muller G. Index of geoaccumulation in sediments of the Rhine River. Geo Journal. 1979; 2:108-18.
  6. Heling D, Rothe P, Förstner U, Stoffers P. Sediments and Environmental Geochemistry. Berlin:Springer; 1990.
  7. Qingjie G, Jun D. Calculating pollution indices by heavy metals in ecological geochemistry assessment and a case study in parks of Beiging. Journal of China University of Geosciences; 2008; 19:230-241.
  8. Abrahim GMS. Holocene Sediment of Tamaki Estuary: characteristion and impact of recent human activity on an urban estuary in Auckland, New Zealand [dissertation]. Aukland, New Zealand: University of Auckland; 2005.
  9. Jayarathne A, Egodawatta P, Ayoko GA, Goonetilleke A. Assessment of ecological and human health risks of metals in urban road dust based on geochemical fractionation and potential bioavailability. Science of the Total Environment. 2018; 635:1609-1619.
  10. Bermudez GMA, Moreno M, Invernizzi R, Plá R, Pignata MM. Heavy metal pollution in topsoils near a cement plant: the role of organic matter and distance to the source to predict total and HCl–extracted heavy metal concentrations. Chemosphere. 2010;78: 375–381.
  11. Sistani N, Meinaddini M, Khorasani N, Hamidian AH, Ali-Taleshi MS. Heavy metal pollution in soils nearby Kerman steel industry: metal richness and degree of contamination assessment. Iranian Journal of Health and Environment. 2017; 10(1): 75-86 (In Persian).
  12. Sabouhi M, Nejadkoorki F, Azimzadeh HR, Ali-Taleshi MS. Heavy metal pollution in the floor dust of Yazd battery repairing workshops in 2014. Iranian Journal of Health and Environment. 2017; 9(1): 127-138 (In Persian).
  13. Saboohi M, Azimzadeh HR, Nejadkoorki F, Ali-Taleshi MS. Assessment of heavy metal pollution in floor dust of Yazd mechanical workplaces. Health and Development Journal. 2018; 7 (1):10-22 (In Persian).
  14. Gunawardana C, Goonetilleke A, Egodawatta P, Dawes L, Kokot S. Source characterization of road dust based on chemical and mineralogical composition. Chemosphere. 2012; 87:163-170.
  15. Adachi K, Tainosho Y. Characterization of heavy metal particles embedded in tire dsut. Environmental international. 2004; 30:1009-1017.
  16. Halek F, Kianpour-rad M, Kavousi A. Characterization and source apportionment of polycyclic aromatic hydrocarbons in the ambient air (Tehran, Iran). Environ Chem Lett. 2010; 8(1):39–44.