تعهد نامه

نوع مقاله : مقالات پژوهشی

نویسندگان

1 دانشگاه علوم پزشکی زاهدان،زاهدان،ایران

2 دانشگاه علوم پزشکی تربت حیدریه،تربت حیدریه،ایران

چکیده

سابقه و هدف:‌ کلروفنول ها یکی از فراوان ترین ترکیبات سمی صنایع هستند که نسبت به تجزیه بیولوژیکی صنایع مقاوم و مدت زمان طولانی در محیط پایدار می‌ماند. بنابراین باید نسبت به حذف آنها و جلوگیری از آلودگی آب‌های پذیرنده اقدام نمود. هدف از این مطالعه بررسی کارایی نانوذره دی‌اکسید ‌روی در حذف6،4،2-تری‌کلروفنول بر اساس طراحی به روش سطح – پاسخ می‌باشد.
مواد و روش‌ها:‌اثر متغیرهای مستقل از جمله pH محلول،‌دوز نانو ذرات‌،زمان تماس و غلظت اولیه6،4،2-تری‌کلروفنول بر عملکرد پاسخ (راندمان حذف6،4،2-تری‌کلروفنول) با روش سطح پاسخ بر مبنای طراحی Box- Behnkenمورد ارزیابی قرار گرفت. جهت انجام آزمایش‌ها از یک راکتور به حجم 1 لیتر با استفاده از نانو ذرات دی‌اکسید‌روی و لامپ UV(15) وات استفاده گردید.
یافته‌ها:‌در این مطالعه با بررسی پارامترهای موثر بر این فرآیند مشخص شد که در شرایط بهینه، pHبرابر 3، دوز نانو ذرات دی‌اکسیدروی برابر4/0 گرم بر لیتر، مدت زمان 72/74 دقیقه و غلظت اولیه6،4،2-تری‌کلروفنول به میزان 50 میلی گرم بر لیتر راندمان حذف 85/95 درصد حاصل گردید.
استنتاج:‌ نتایج حاصل از آنالیز داده‌ها نشان داد که فرآیند فوتوکاتالیستی در حضور نانو ذرات دی‌اکسیدروی سبب تسریع میزان حذف راندمان6،4،2-تری‌کلروفنول می‌شود.

کلیدواژه‌ها

عنوان مقاله [English]

Efficiency evaluation of photocatalytic process using ZnO nano catalyst for removal of 2,4,6-trichlorophenol by response surface methodology

نویسندگان [English]

  • Anis Jahantigh 1
  • Hossien Kamani 1
  • Elham Norabadi 1
  • Edris Bazrafshan 2
  • Fateme Sancholi 1
  • Ali Meshkinian 1

1 Zahedan University of Medical Sciences،Zahedan،Iran

2 Torbat Heydariyeh University of Medical Sciences،Torbat Heydariyeh،Iran

چکیده [English]

Abstract
Backgroundandpurpose:Chlorophenols are one of the toxic compounds in the industries that are resistant to biodegradation and they last a long time in environment. Therefore, it is necessary to eliminate them and prevent pollution of the receiving waters. The aim of this study was evaluation of ZnO nano-particles for removal of 2,4,6-trichlorophenol from aqueous solution based on the response surface methodology (RSM) model.
Materials and methods: Effect of independent variables including pH, catalyst dose, contact time and the initial concentration of 2,4,6-trichlorophenol on response variable (removal of 2,4,6-trichlorophenolfrom) were evaluated based on the response surface methodology (box-behnken method). In this study, all experiments were carried out in a batch reactor containing ZnO nano-particles under 15 Watt UV lamp

Results:The results showed that the best conditions for the removal of 2,4,6-trichlorophenolwere achieved at pH= 3,nano-particle concentration 0.4g/l, reaction time and74.72 min and initial concentration of 2,4,6-trichlorophenol50 mg/l contact time (95.85% removal efficiency).
Results: The results showed that the best conditions for removal of 2,4,6-trichlorophenol were achieved at pH=3, nano-particle concentration 0.4g/l, reaction time 74.72 min, initial concentration of 2,4,6-trichlorophenol 50 mg/l (95.85% removal efficiency).

Conclusion: The results showed that photocatalytic process was accelerated in the presence of ZnO nano-particle and enhanced removal of 2,4,6-trichlorophenol.

کلیدواژه‌ها [English]

  • photocatalytic
  • 2/4/6-trichlorophenol
  • ZnO nano-particle
  • response surface methodology
1. Liu Y. Aqueous p-chloronitrobenzene decomposition induced by contact glow discharge electrolysis. Hazardous Materials. Hazardous Materials. 2009;166(2-3):1495-9. 
2. Nano G, Strathmann T. Application of surface complexation modeling to the reactivity of iron(II) with nitroaromatic and oxime carbamate contaminants in aqueous TiO2 suspensions. Journal of Colloid and Interface Science. 15 may 2008;321(2):350-9. 
3. Zhang T, You l, Zhang Y. Photocatalytic reduction of p-chloronitrobenzene on illuminated nano-titanium dioxide particles. Dyes and pigments. 2006;68(2-3):95-100. 
4. Qasemi M, Afsharnia M, ZareiA,Najafpoor A, Salari S,Shams M. Phenol removal from aqueous solution using Citrulluscolocynthis waste ash. Dyes and pigments. 2018;18:620-628. 
5. WHO. International Program on Chemical Safety, Environmental Health Criteria 71:Chlorophenols. Geneva: WHO. 1987:1-19.
 6. kiefer MC, Hengraprom S, Knuteson S. Environmental Engineering Chemistry II:organochlorines:Analysis of the Chlorophenol Group. Clemsonuniverity EE and S. 1998;345:1-11. 
7. Otte MP, Comeau Y, Samson R, Wager C. Enhancement of Penta a chlo rophenol Bioremediation Using Organic and Inorganic Support. Bioremediation. 1999;3(1):35-45. 
8. An F, Feng X, Gao B. Adsorption property and mechanism of composite adsorbent PMAA/SiO9 for aniline. Hazardous Materials. 2010;178(1-3):499-504.
 9. Dehghanifard E, JonidiJafari A, Kalantari RR, Gholami M, Esrafili A. Photocatalytic Removal of Aniline from Synthetic Wastewater using ZnO Nanoparticle under Ultraviolet Irradiation. Iranian Journal of Health and Environment. 2012;5(2):167-78.(in Persian) 
10. Gómez JL, León G, Hidalgo AM, Gómez M, Murcia MD, Griñán G. Application of reverse osmosis to remove aniline from wastewater. Desalination. 2009;245(1-3):687-93. 
11. Dvořák L, Lederer T, Jirků V, Masák J, Novák L. Removal of aniline, cyanides and diphenylguanidine from industrial wastewater using a full-scale moving bed biofilm reactor. Process Biochemistry. 2014;49(1):102-9. 
12. Dehghani M, Mahmoodi M, Zareic A. Toxicity study of UV/ZnO treated solution containing Reactive blue 29 using Daphnia magna as a biological indicator. MethodsX. 2019;6:660-5. 
13. Wu G-Q, Zhang X, Hui H, Yan J, Zhang Q-S, Jing-LinWan, et al. Adsorptive removal of aniline from aqueous solution by oxygen plasma irradiated bamboo based activated carbon. Chemical Engineering. 2012;185–186:201-10. 
14. http://www.epa.gov/chemfact/anali-sd.txt, Aniline Fact Sheet,.9105. 
15. Gürten AA, Uçan S, Özler MA, Ayar A. Removal of aniline from aqueous solution by PVC-CDAE ligand-exchanger. Hazardous Materials. 2005;120(1-3):81-7. 
16. Juang RS, Huang WC, Hsu YH. Treatment of phenol in synthetic saline wastewater by solvent extraction and twophas membrane biodegradation. Journal Hazard Mater. 2009;164(1):46-52.
 17. Dianati-Tilaki1 R, Zazoli M, Yazdani J, Alamgholilu M, Rostamali E. Degradation of 4-chlorophenol by sunlight using catalyst of zinc oxide. J Mazandaran Univ Med Sci. 2014;23(2):196-201.(in Persian)
 18. Saeedi S, Godini H, Kamarehie B, Zare S, Rashidipoor M, Ebrahimi Z, et al. Investigation of Experimental Factors in Photocatalytical Degradation of Phenol from Aqueous Solution by UV/ZnO. Environmental Health Enginering. 2016;3(3):220-7.(in Persian) 
19. Gaya UI, Abdullah AH, Zainal Z, Hussein MZ. Photocatalytic treatment of 4-chlorophenol in aqueous ZnO suspensions: intermediates, influence of dosage and inorganic anions. Hazard Mater. 2009;168(1):57-63.
 20. Meshram S, Limayeb R, Ghodkec S, Nigama S, Sonawanea S, Chikate R. Continuous flow photocatalytic reactor using ZnO–bentonite nanocomposite for degradation of phenol. Chemical Engineering. 2001;172(2-3):1008– 15. 21. Ashrafi S, Kamani H, SoheilArezomand H, Yousefi N, Mahvi A. Optimization and modeling of process variables for adsorption of Basic Blue 41 on NaOH-modified rice husk using response surface methodology. Desalination and Water Treatment. 2016;57(30):14051-9.(in Persian)
 22. Wu J, Zhang H, Oturan N, Wang Y, Chen L, Oturan M. Application of response surface methodology to the removal of the antibiotic tetracycline by electrochemical process using carbon-felt cathode and DSA (Ti/RuO2– IrO2) anode. Chemosphere. 2012;87(6):614-20.
23.      Dehghania M, Zarei A, Mesdaghinia A, Nabizadeh R, Alimohammadi M, Afsharnia M, et al. Production and application of a treated bentonite–chitosan composite for the efficient removal of humic acid from aqueous solution. Chemical Engineering Research and Design. 2018;140:102-15. 
24. Sharifi M. Optimization of coagulation-flocculation process for turbidity removal using response surface methodology: a study in Ilam water treatment plant, Iran. Desalination and Water Treatment. 2019;147:234-42.
 25. Mohammadi A, Zareib A, Alidadi H, Afsharniab M, Shams M. Two-dimensional zeoliticimidazolate framework-8 for efficient removal of phosphate from water, process modeling, optimization, kinetic,and isotherm studies. Desalination and Water Treatment. 2018;129:244-54. 
26. Azari A, Gholami M, Torkshavand Z, Yari AR, Ahmadi E, Kakavandi B. Evaluation of basic violet 16 adsorption from aqueous solution by magnetic zero valent iron-activated carbon nanocomposite using response surface method: isotherm and kinetic studies. Mazandaran Univ Med Sci. 2015;25(121):333-47.(in Persian)
 27. Bazrafshan E, Mohammadi L, Balarak D, Keikhaei S, Mahvi AH. Optimization of diazinon removal from aqueous environments by electrocoagulation process using response surface methodology. Mazandaran Univ Med Sci. 2016;26(138):118-30.(in Persian)
 28. Zazouli M, Dianatitilaki R, Safarpour M. Nitrate removal from water by nano zero valent iron in the presence and absence of ultraviolet light. Mazandaran Univ Med Sci. 2016;24(113):151-61.(in Persian)
 29. Zazouli M, Ebrahimzadeh MA, YazdaniCharati J, ShiralizadehDezfoli A, Rostamali E, Veisi F. Effect of sunlight and ultraviolet radiation in the titanium dioxide (TiO2) nanoparticles for removal of furfural from water. Mazandaran Univ Med Sci. 2013;23(107):126-38.(in Persian)
 30. Zazouli MA, Veisi F, Veisi A. Modeling Bisphenol A removal from aqueous solution by activated carbon and eggshell. Mazandaran Univ Med Sci. 2013;22(2):129-38.(in Persian)
 31. Pavasupree S, Suzuki Y, Pivsa-Art S, Yoshikawa S. Synthesis and characterization of nanoporous, nanorods,nanowires metal oxides. Science and Technology of Advanced Materials. 2005;6(3-4):224-9.
 32. Ray S, Lalman JA, Biswas N. Using the Box- Benkhen technique to statistically model phenol photocatalytic degradation by titanium dioxide nanoparticles. Chem eng. 2009;150(1):15-24. 
33. Kim K, Cho E, Thokchom B, Cui M, Jang M, Khim J. Synergistic sonoelectrochemical removal of substituted phenol: Implications of ultrasonic parameters and physicochemical properties. Ultrasonics Sonochemistry. 2015;24:172-7.
34. Busca G, Berardinelli S, Resini C, Arrighi L. Technologies for the removal of phenol from fluid streams: A short review of recent developments. Hazard Mater. 2008;160 (2-3):265-88.
 35. Caturla F, Martin-Martinez J, Molina-Sabio M, RodriguezReionoso F, Torregrosa R. Adsorption ofSubstituted Phenols on activated carbon. Colloid Interface Sci. 1988;124(2):528-34. 
36. Lathasree S, Rao AN, SivaSankar B, Sadasivam V, Rengaraj K. Heterogeneous photocatalytic mineralizationof phenols in aqueous solutions. Molecular Catalysis A: Chemical. 2004;223(1-2):101-5. 
37. Yu H, Zheng X, Yin Z, Tao F, Fang B, Hou K. Preparation of nitrogen-doped TiO2 nanoparticle catalyst and itscatalytic activity under visible light. Chinese Journal of Chemical Engineering. 2007;15(6):802-7. 
38. Guo Z, Ma R, Li G. Degradation of phenol by nanomaterial TiO2 in wastewater. Chemical Engineering. 2006;119(1):55-9. 
39. Kilic M, Apaydin-Varol E, Pütün AE. Adsorptive removal of phenol from aqueous solutions on activated carbon prepared from tobacco residues: Equilibrium, kinetics and thermodynamics. Hazard Mater. 2011;189(1-2):397-403. 
40. Hameed BH, Rahman AA. Removal of phenol from aqueous solutions by adsorption onto activated carbon prepared from biomass material. Hazard Mater. 2008;160(2):576-81. 
41. Srihari V, Das A. Comparative studies on adsorptive removal of phenol by three agrobased carbons: Equilibrium and isotherm studies. Ecotoxicology and Environmental Safety. 2008;71(1):274-83.
 42. Chiou CH, Wu C, Juang RS. Influence of operating parameters on photocatalytic degradation of phenol in UV/TiO2 process. Chemical Engineering Journal. 2008;139(2):322-9. 
43. Bensaadi Z, Yeddou-Mezenner N, Trari M, Medjene F. Kinetic studies of β blocker photodegradation on TiO 2. Environmental Chemical Engineering. 2014;2(3):1371-7. 
44. Yang L, E.Yu L, B.Rayb M. Degradation of paracetamol in aqueous solutions by TiO 2 photocatalysis. Water Research. 2008;42(13):3480-8. 
45. Mahvi AH, Ghanbarian M, Nasseri S, Khairi A. Mineralization and discoloration of textile wastewater by TiO2 nanoparticles. Desalination. 2009;239(1-3):309-16. (in Persian) 
46. Rengaraj S, Venkataraj S, Yeon JW, Kim Y, Li X, Pang G. Preparation, characterization and application of NdTiO2 photocatalyst for the reduction of Cr (VI) under UV light illumination. Applied Catalysis B: Environmental. 2007;77(1-2):157-65. 
47. Pardeshi SK, Patil AB. A Simple Route for Photocatalytic Degradation of Phenol in Aqueous Zinc Oxide Suspension Using Solar Energy. Sol Energy. 2008;82(8):700-5.