تعهد نامه

نوع مقاله : مقالات پژوهشی

نویسندگان

1 دانشگاه ازاد اسلامی اصفهان

2 دانشگاه ازاد اسلامی واحد اصفهان

چکیده

زمینه و هدف: مواد نفتی از قبیل نفت خام، گازوئیل و بنزین به عنوان بیشترین مورد مصرفی در دنیا، عمده‌ترین آلوده کننده‌های آب‌ها هستند. سالیانه حدود ده میلیون تن مواد نفتی در دنیا به بیرون ریخته می‌شود. استفاده از روش‌های بهینه و کارآمد برای تصفیه پساب-های حاوی فرآورده‌های نفت( همچون گازوئیل) کاملا ضروری می‌باشد. روش‌های مختلفی برای پاکسازی آلودگی‌های نفتی و مشتقات آن وجود دارد. در این پژوهش، از جاذب کاه و کلش به عنوان جاذب آلی برای حذف آلودگی نفتی از پساب استفاده شد.
مواد و روش‌ها: در ابتدا با استفاده از آنالیز‌‌ FT-IR ترکیب شیمیایی کاه و کلش تعیین شد، سپس آزمایشات جذب به صورت ناپیوسته با استفاده از محلول‌های آزمایشگاهی حاوی گازوئیل انجام گرفت و شرایط بهینه جذب با تغییر فاکتورهای موثر بر جذب که شامل pH، غلظت اولیه آلوده کننده، زمان تماس و مقدار جاذب بر میزان جذب در سطوح مختلف بود، مورد بررسی قرار گرفت و میزان جذب گازوئیل به روش وزنی تعیین شد.
یافته‌ها: بیشترین میزان جذب کاه و کلش در 5=pH مشاهده شد که با دیگر pH ها اختلاف معنی داری داشت(میزان 89/87 درصد جذب؛ 05/0p <) و کمترین درصد جذب در 9=pH دیده شد که اختلاف معنی داری با سایر pHها نداشت(میزان 04/39 درصد جذب؛ 05/0p <). کارایی مقادیر جاذب کاه و کلش در 2 گرم در لیتر با اختلاف معنی داری بیشتر از دیگر مقدار جاذب‌ها بود(میزان 48/51 درصد جذب؛ 05/0p <) و کمترین درصد جذب با اختلاف معنی داری نسبت به سایر مقادیر در 25/۰ گرم در لیتر مشاهده شد(میزان 30/38 درصد؛ 05/0˂P). برازش هم‌دماهای جذب سطحی نشان داد که جذب گازوئیل توسط کاه و کلش با هر دو مدل فروندویچ و لانگمویر به علت داشتن R2 بالا مطابقت داشت(99/0=R2 و 96/0R2=).

کلیدواژه‌ها

عنوان مقاله [English]

Investigating the use of straw in removing oil pollution from water (Absorb gasoline by straw

نویسندگان [English]

  • Mohammad Hadi Abolhasani 1
  • Niloofar Pirestani 2
  • Parinaz Ahmadi 1

1 islmaic azad university of esfehan

2 islamic azad university of esfehan

چکیده [English]

Background and Aim: Petroleum products such as crude oil, gasoline and gasoline are the most commonly used in the world, the major pollutants of water. About 10 million tons of oil are burnt annually in the world. Therefore, the development of new technologies for the elimination and purification of oil pollution is essential. There are several methods for cleaning up oil pollution and its derivatives. In this research, straw and chalk absorber was used as an organic adsorbent to remove diesel oil from wastewater.
Materials and method: The straw and chalk were firstly determined using the FT-IR analysis. Then the adsorption experiments were performed discontinuously using diesel oil laboratory solutions. Optimum adsorption conditions were obtained by changing the factors affecting adsorption including pH, initial concentration of contaminant, contact time and adsorbent amount on adsorption at different levels, The oil absorption was determined by weighting method. Ultimately, the use of adsorbent for laboratory wastewater was studied.
Results: The highest absorbent efficiency at the time of equilibrium was observed for absorbing oil using straw and chalk absorber in 15 minutes, which did not have a significant difference with other contact times (49.85% absorbance, p < 0.05) and the lowest value was observed without a significant difference in 3 minutes (37.19% absorption). The effect of straw absorbent values in 2 g/L was significantly higher than other amount of adsorbents (51.48% absorption, p < 0.05) and the lowest percentage of adsorption was significantly different from other values in 0.25 And 0.5 grams per liter (38.30%, p < 0.05). The fitting of Isotherm showed that the adsorption of diesel oil by straw and chalk with both Freundwich and Langmuir models were consistent with the high R2 (R2 = 0.99 and R2 = 0.96).

کلیدواژه‌ها [English]

  • Gasolinefrom
  • Wastewater
  • Organic absorber
  • Straw and chalk
1. Dehghani F, Rahnamaie R, Malakoti Mj, Saadat S. Investigating the ratio of calcium to magnesium ratio in some irrigation water in the country. Journal of Water Research in Agriculture. 2012; 1, 1-13. [Persian]. 
2. Taghvaiepoor A. Water Analysis, Vol. 1. 2015; Arak University Press. [Persian]. 
3. Shashwat SB, Miland VJ, Radha VJ. Treatment of Oil Spill by Sorption Technique Fatty Acid GrafteSawdust. J. Chemosphere. 2006; 64, 1026-1031. 4. Hansen E, Rodrigues MAS, de Aquim PM. Wastewater reuse in a cascade based system of a petrochemical industry for the replacement of losses in cooling towers. J Environ Manag. 2016; 181(2), 157-62.
 5. Geetha SJ, Banat IM, Joshi SJ. Biosurfactants: Production and potential applications in microbial enhanced oil recovery (MEOR). Biocatalysis and Agricultural Biotechnology. 2018; 1(14), 23-32. 
6. Neelanchery R, Jih-Gaw L. Current status of microwave application in waste water treatment- A review, J.Chemical Engineering. 2011; 166, 797-813.
 7. Klan P, Varik M, Non-catalytic remediation of aqueous solution by microwave-assisted photolysis in the presence of H2O2, J. Photochem, Photobiol. 2006; 177, 24-33. 
8. Kuhns DB, Hsu AP, Sun D, Lau K, Fink D, Griffith P, Huang DW, Priel DA, Mendez L, Kreuzburg S. and Zerbe CS. NCF1 (p47phox)–deficient chronic granulomatous disease: comprehensive genetic and flow cytometric analysis. Blood advances. 2019; 22, 3(2); 136-47.
 9. Tashiaki M. and Takashi N, Activated carbon filter treatment of laundry waste water in nuclear power plants and filter recovery by heating vacuum. J. Carbon. 2000; 38(5), 709714.
 10.Balla W, Essadki A, Gourich B, Dassaa A, Chenik H, Azzi M.
Electrocoagulation/electroflotation of reactive, disperse and mixture dyes in an externalloop airlift reactor. Journal of hazardous materials. 2010; 184(1), 710-716.
 11. Bande RM, Prasad B, Mishra I, Wasewar KL. Oil field effluent water treatment for safe disposal by electroflotation. Chemical Engineering Journal. 2008; 137(3), 503-509. 
12. Chavan A and Mukherji S. Treatment of hydrocarbon-rich wastewater using oil degrading bacteria and phototrophic microorganisms in rotating biological contactor: E_ect of N:P ratio, Journal of Hazardous Materials. 2008; 154(1-3), 63-72. 
13. Kuyukina MS, Ivshina IR, Serebrennikova MK, Krivorutchko AB, Podorozhko EA, Ivanov RV and Lozinsky VI. Petroleumcontaminated water treatment in a uidized-bed bioreactor with immobilized Rhodococcus cells, Int. Biodeterioration Biodegrad. 2009; 63(4), 427-432.
 14. Rahman MM. and Al-Malack MH. Performance of a crossow membrane bioreactor (CF-MBR) when treating re_nery wastewater, Desalination. 2006; 191(1-3), 16- 26. 
15. El-Naas MH, Al-Zuhair S and Abu Alhaija M. Removal of phenol from petroleum re_nery wastewater through adsorption on date-pit activated carbon, Journal of Hazardous Materials. 2010; 162(3), 997-1005. 
16. Isil Gurten I, Ozmak M, Yagmur E and Aktas Z. Preparation and characterization of activated carbon from waste tea using K2CO3, Biomass and Bioenergy. 2012; 37, 73-81. 
17. Purnomo CW, Salim C and Hinode H. E_ect of the activation method on the properties and adsorption behavior of bagasse y ash-based activated carbon, Fuel Processing Technology. 2012; 102, 132-139. 
18. Adebajo MO, Frost RL, Kloprogge JT, Carmody O, Kokot S. Porous materials for oil spill cleanup: A review of synthesis and absorbing properties. J. of Porous Materials. 2003; 10,  159-170. 
19. Annunciado TR, Sydenstricker THD, Amico SC. Experimental investigation of various vegetable fibers as sorbent materials for oil spills. Marine Pollution Bulletin. 2005; 50, 1340-1346. 
20. Ahmad AL, Sumathi S, Hameed BH. Adsorption of residue oil from palm oil mill effluent using powder and flake chitosan: Equilibrium and kinetic studies, Water Research. 2005; 39, 2483–2494. 
21. Genieva S, Turmanova SC, Dimitrova A, Vlaev L, Characterization of Rice Husks and the Products of Its Thermal Degradation in Air or Nitrogen Atmosphere, J. Therm. Anal. Calorim. 2008; 93(2), 387-396. 
22. Anbia M. and Moradi S.E. Adsorption of naphthalenederived compounds from water by chemically oxidized nanoporous carbon, Chemical Engineering Journal. 2009; 148(2-3), 452-458. 
23. Khosravi R, Eslami H, Zarei A, Heidari M, Baghani AN, Safavi N, Mokammel A, Fazlzadeh M. and Adhami S. Comparative evaluation of nitrate adsorption from aqueous solutions using green and red local montmorillonite adsorbents. Desalination and Water Treatment. 2018; 116, 119-28. 
24. Qasemi M, Zarei A, Afsharnia M, Salehi R, Allahdadi M. and Farhang M. Data on cadmium removal from synthetic aqueous solution using garbage ash. Data in brief. 2018; 1(20), 1115-1123. 
25. Qasemi M, Afsharnia M, Zarei A, Najafpoor AA, Salari S. and Shams M. Phenol removal from aqueous solution using Citrullus colocynthis waste ash. Data in brief. 2018; 1(18), 620-8.
 26. Dehghani MH, Zarei A, Mesdaghinia A, Nabizadeh R, Alimohammadi M, Afsharnia M. and McKay G. Production and application of a treated bentonite–chitosan composite for the efficient removal of humic acid from aqueous solution. Chemical Engineering Research and Design. 2018; 1(140), 102-115. 27. Markovska I, Lyubchev L, A Study on the Thermal Destruction of Rice Husk in Air and Nitrogen Atmosphere, J. Therm. Anal. Calorim. 2007; 89(3), 809-814. 
28. Vlaev L, Petkov P, Dimitrov A, Genieva S, Cleanup of Water Polluted with Crude Oil or Diesel Fuel Using Rice Husks Ash, J. Taiwan Inst. Chem. Eng. 2011; 42(6), 957-964. 
29. Ibrahim S, Wang S, Ang HM, Removal of Emulsified Oil from Oily Wastewater Using Agricultural Waste Barley Straw, Biochem. Eng. J. 2010; 49(1), 78-83.
 30. Ong ST, Lee CK, Zainal Z, Removal of basic and reactive dyes using ethylenediamine modified rice hull. Bioresour Technol. 2007; 15, 2792-2799.
31. Banat FA, Al-Bashir B, Al-Asheh S, Hayalneh O. Adsorption of phenol by bentonite. Environ Pollut. 2000; 107, 391398.
 32. Varghese S, Vinod VP, Kinetic and equilibrium charactrerization of phenols adsorpton onto a novel activated carbom in water treatment. Indian J Chem Technol. 2004; 11, 825-833. 
33. Abolhasani MH, Pirestani N, Amini H. Study on the efficacy of mineral wool wastes in adsorption of waterborne oil contamination (Kerosene). Iranian Journal of Research in Environmental Health.Winter 2018;3 (4) : 300-311. 
34. SAH, G, H, A, B.ROPHFORWUNA: IAKS. Sharif Scientific Journal 2015; 31.2(3.2): 41-48.
 35. Piristani N, Abolhasani MH, Amin Javaheri FS. Investigating the use of straw in removing oil pollution from water. Journal of Environmental and Water Engineering 2017; 4(1):12-22.
 36. Behnoud R, Jafarzadeh Haghighifard N, Anvaripour B, Frosty M. Laboratory study of the ability of some natural plants as absorbent for oil spots. International Conference on Oil, Gas, Petrochemical and Power Plant. Tir 1391. Tehran. Iran.
 37. Mokhtari Hosseini ZB, Taktom Shenavaie Z, SalehAbadi Kh. Removal of Hydrocarbon from Sludge of Diesel Storage Tanks by Semnan Zeolite.  journal of Petroleum Research 2016; 26(88): 112-122. 
38. Ghasemi Z, Younesi H, Zaynati Zadeh AA. Efficiency of Photocatalyst of Titanium Nitoxide Stabilized on Fe-ZSM-5 Zeolite in Removal of Organic Pollutants of Oil Refinery Waste. Journal of Water and wastewater 2016; 27(2): 2333.
 39. Razavi Z, Mirghfari N. Application of crude rice crust in the removal of crude from aqueous media. Journal of Chemistry and Chemical Engineering of Iran 2013, 35(1): 13-23. 
40. JafariMansourian H, Mahvi AH, JanidjiJafari A and Malakotian M. Efficiency of the pod of acaciaurotilysis plant as an inexpensive and accessible absorbent for phenol removal. Water and Wastewater Journal 2015; 2: 124-132.
 41. Nikkhah AA, Ziluie H, Keshavarz AR. Effect of Structural Correction of Polyurethane Foam with Activated Carbon on Absorption of Oil Pollutants from Water. journal of water and Wastewater 2016; 27(2): 84-93.
 42. Chowdhury AK, Sarkar AD, Bandyopadhyay A. Rice Husk Ash as a Low Cost Adsorbent for the Removal of Methylene Blue and Congo Red in Aqueous Phases, Clean–Soil, Air, Water. 2009; 37(7), 581-591. 
43. Proctor A, Clark P, Parker C. Rice hull ash adsorbent performance under commercial soy oil bleaching conditions, Journal of the American Oil Chemists’ Society. 1995; 72(4), 459-462.
 44. Haussard M, Gaballah I, Kanari N, De Donato P, Barres O, Villieras F. Separation of Hydrocarbons and Lipid from Water Using Treated Bark, Water Res. 2003; 37(2), 362374. 45. Husseien M, Amer A, El-Maghraby A. Taha N. Availability of Barley Straw Application on Oil Spill Clean up, Int. J.
Environ. Sci. Technol. 2009; 6(1), 123-130.
 46. Igansi AV, Engelmann J, Lütke SF, Porto FB, Pinto LA. and Cadaval Jr TR. Isotherms, kinetics, and thermodynamic studies for adsorption of pigments and oxidation products in oil bleaching from catfish waste. Chemical Engineering Communications. 2019; 9, 1-5. 
47. Lim TT, Huang X. Evaluation of Kapok (Ceiba pentandra (L.) Gaertn.) as a Natural Hollow Hydrophobic-Oleophilic Fibrous Sorbent for Oil Spill Cleanup, Chemosphere. 2007; 66(5), 955-963.