تعهد نامه

نوع مقاله : مقالات پژوهشی

نویسندگان

1 گروه مهندسی محیط‌زیست، دانشکده محیط‌زیست، دانشگاه تهران، تهران، ایران

2 دانشکده عمران، دانشگاه صنعتی نوشیروانی بابل

3 مرکز تحقیقات آلاینده‌های محیطی، دانشگاه علوم پزشکی قم، قم، ایران

4 دانشکده محیط‌زیست، دانشگاه تهران، تهران، ایران

چکیده

زمینه و هدف: کاهش حجم لجن تولیدی تصفیه بیولوژیکی به روش لجن فعال، از اهمیت بالایی برخوردار است. واحد آبگیری، وظیفه جداسازی آب مازاد از لجن را به عهده دارد. مطالعه حاضر با هدف بررسی اثر سیستم انتشار امواج اولتراسونیک بر مواد منعقد کننده در فرآیند آبگیری و افزایش جامدات کیک لجن انجام شد.  
مواد و روش‌ها: این مطالعه تجربی به‌صورت ناپیوسته و در مقیاس آزمایشگاهی انجام شد. در طی 2 فصل، تعداد 12 نمونه با فاصله زمانی 15 روزه از تصفیه‌خانه برداشت گردید. متغیرهای تحقیقات شامل: چگالی اولتراسوند (0/375، 0/75، 1، 1/3 و 2/5) بر حسب وات بر میلی‌لیتر، زمان (1، 5، 10، 15 و 30) بر حسب دقیقه و انرژی ورودی ویژه (208، 1041، 2083، 3124 و 6249) بر حسب کیلوژول بر کیلوگرم جامدات معلق بود. تأثیر امواج اولتراسونیک با استفاده از دستگاه سنجش اندازه ذرات بر روی مواد منعقد کننده مورد مطالعه قرار گرفت.  
یافتهها: میزان بهینه جامدات کیک لجن و زمان مکش موئینه برابر 26/4% و 86 ثانیه برای شرایط راهبری زمان و انرژی ورودی ویژه برابر 5 دقیقه و 1041 کیلوژول بر کیلوگرم جامدات معلق به‌دست آمد. میزان d10، d50، d90 و متوسط اندازه ذرات با اعمال امواج اولتراسونیک به ترتیب برابر 6/3، 44/2، 24/4 و 28/84 میکرومتر بود.
نتیجه‌گیری: امواج اولتراسوند موجب ایجاد خلل و فرج در ساختار فیزیکی پلیمرها شده و با افزایش بارِ سطحی کاتیونی، موجب افزایش میزان جذب ذرات و بزرگ‌تر شدن لخته‌ها و سبب افزایش میزان جامدات کیک لجن و در نتیجه افزایش آبگیری می‌گردد.
نوع مقاله: پژوهشی

کلیدواژه‌ها

عنوان مقاله [English]

Investigating the effect of ultrasonic waves on coagulants in dewatering of excess sludge of south of Tehran

نویسندگان [English]

  • Farshad Golbabei Kootenaei 1
  • Nasser Mehrdadi 1
  • Gholamreza Nabi Bidhendi 1
  • Hasan Aminirad 2
  • Mahdi Asadi Ghalhari 3
  • Farima Saeedi 4

1 Graduate Faculty of Environment, University of Tehran, Tehran, Iran

2 Department of Civil Engineering, Babol Noshirvani University of Technology, Babol, Iran

3 Research Centre for Environmental Pollutants, Qom University of Medical Sciences, Qom, Iran

4 Graduate Faculty of Environment, University of Tehran, Tehran, Iran

چکیده [English]

Abstract
Background and purpose: Reducing the amount of sludge produced by the biological treatment of active sludge is of great importance. The main task of dewatering unit is to separate water from excess sludge. The aim of this study is to determine the effect of ultrasonic waves on coagulants in improving the sludge dewatering process and increasing solid content of sludge cake.
Materials and methods:This is an experimental study performed in batch laboratory scale. During the two seasons, 12 samples were taken at 15 days’ intervals. Variables include ultrasound density (0.375, 0.75, 1, 1.3 and 2.5) in watts per ml, Time (1, 5, 10, 15 and 30) in minute, and specific energy input (208, 1041, 2083, 3124 and 6249) in kilojoule on kilo total suspended solids. The effects of ultrasonic waves on coagulants were investigated by using Particle Size Analizer (PSA).
Results:The optimum amount of solid content of sludge and capillary suction time (CST) was equal to 26.4 percent and 86 seconds in sonification time of 5 minutes and specific energy input of 1041 kj/kg TS. By applying ultrasonic waves, d10, d50, d90 and average particle size amount were equal to 6.3, 44.2, 24.4 and 28.84 micrometers respectively.
Conclusion:Ultrasound waves create pores in the physical structure of the polymers and the increase of cationic surface charge increases the adsorption of particles and made larger flocs and can increase the solid content of sludge and improve sludge dewatering process.

کلیدواژه‌ها [English]

  • Coagulant
  • Dewatering
  • Excess sludge
  • Solid content of sludge
  • Ultrasonic Waves
1. Thanh Bui X, Chiemchaisri C, Fujioka T, Varjani S. Water and Wastewater Treatment Technologies. Springer Nature Singapore Pte Ltd, 2019.
 2. Ramalho R. Introduction to Wastewater Treatment Processes. 2nd ed. Academic Press, 2013.
 3. Turovskiy I, Mathai P. Wastewater sludge processing. Wiley Publications, 2006. 
4. Mehrdadi N, Mohamadi A, Aghajani A, Zahedi A. Sonochemical solubilization of nitrogen and phosphorus: improvement of the efficiency. Fresen Environ Bullet, 2012; 21 (3): 736-743. 
5. Neis A, Kyllonen H, Korpijarvi K, Pirkonen P, Paavol T, Jokela J. Ultrasound assisted method to increase soluble chemical oxygen demand (SCOD) of sewage sludge for digestion. Ultrasonic Sonochem, 2005; 12: 115–120.
 6. Pilli S, Bhunia P, Yan S, LeBlanc R, Tyagi R, Surampalli R. Ultrasonic pretreatment of sludge: A review. Ultrasonic Sonochem, 2011; 18: 1-18.
 7. Foladori P, Andreottola G, Ziglio G. Sludge reduction technologies in wastewater treatment plants. IWA Publishing, 2010.
 8. Show K, Mao T, Lee D. Optimisation of sludge disruption by sonication. Water Res, 2007; 41: 4741 – 4747. 
9. Bougrier C, Carrere H, Delgenes J. Solubilisation of wasteactivated sludge by ultrasonic treatment. Chem Eng J, 2005; 106: 163-169. 
10. Mohammadi A, Mehrdadi N, Nabi G, Torabian A. Excess sludge reduction using ultrasonic waves in biological wastewater treatment. Desalination, 2011; 275 (1-3): 6773. 
11. Schlafer O, Sievers M, Klotzbucher H, Onyeche T. Improvement of biological activity by low energy ultrasound assisted bioreactors. Ultrasonics, 2000; 38: 711-716. 
12. Bien C, Lee D, Chang B, You C, Tay J. Weak ultrasonic pretreatment on anaerobic digestion of flocculated activated biosolids. Water Res, 2002; 36: 2681–2688. 
13. Feng X, Deng J, Lei H, Bai T, Fan Q, Li Z. Dewaterability of waste activated sludge with ultrasound conditioning. Bioresource Technology, 2009; 100 (10): 56-71. 
14. Mahvi A, Heidari A, Nabizadeh R, Alimohammadi M, Gholami M. A survey on the effect of ultrasonic method on dewatering of bio sludge in wastewater treatment plant. Journal of Sabzevar University of Medical Sciences, 2014; 8 (4): 424-430. (Persian) 
15. Zhu C, Zhang P, Wang H, Ye J. Conditioning of sewage sludge via combined ultrasonication-flocculation-skeleton building to improve sludge dewaterability. 2018; 40: 353360. 
16. Gonze E, Pillot S, Valette E, Gonthier Y, Bernis A. Ultrasonictreatment of an aerobic activated sludge in a batch reactor. Chem Eng Process, 2003; 42: 965-975. 
17. Chen G, Lin W, Lee D. Capillary suction time (CST) as a measure of sludge dewaterability. Water Sci Technology, 1996; 34 (3-4): 443-448. 
18. Huisman M, Vankesteren W. Consolidaton theory applied to the Capillary Suction Time (CST) apparatus. Water Sci Technology, 1998; 37 (6-7): 117-124. 
19. Suky B, Jannesar R. Water and wastewater clarification process. Tehran:Jahad Daneshgahi Publication, 2010, 124–126. (Persian)
 20. Apul O. Municipal Sludge Minimization: Evaluation of Ultrasonic and Acidic Pretreatment Methods and Their Subsequent Effects on Anaerobic Digestion. Master of Science Thesis, Middle East Technical University, 2009; 2532. 
21. Kopp J, Dichtl N. Influence of the free water content on the dewaterability of sewage sludges. Water Sci Technology, 2001; 44 (10): 177-183. 
22. APHA. Standard Methods for the Examination of Water and Wastewater. 23st ed. Washington: American Public Health Association/American Water Works Association/ Water Environment Federation, 2017.
 23. Poxon T, Darby J. Extracellular Polyanions in digested sludge: measurment and relationship to sludge dewaterability. Water Res, 1997; 31 (4): 749-758. 
24. Bien B, Kempa E, Bien J. Influence of ultrasonic field on structure and parameters of sewage sludge for dewatering process. Water Sci Technology, 1997; 36 (4): 287-291.
 25. Lippert T, Bandelin J, MuschJörg A, Koch K. Energy-positive sewage sludge pre-treatment with a novel ultrasonic flatbed reactor at low energy input. 2018; 264: 298-305. 
26. Hernando M, Elorza G, Labanda J, Llorens J. 2013. Dewaterability of sewage sludge by ultrasonic, thermal and chemical treatments, Chem Eng J, 2013; 230: 102-110. 
27. Bourgier C, Albasi C, Delgenes J, Carrere H. Effect of ultrasonic, Thermal and ozone pretreatment on waste activated sludge solubilization and anaerobic biodegradability. Chem Eng Process, 2006; 45: 711-718. 
28. Feng L, Liua S, Zhenga H, Liang J, Sun Y, Zhang S, Chen X. Using ultrasonic (US)-initiated template copolymerization for preparation of an enhanced cationic polyacrylamide (CPAM) and its application in sludge dewatering. Ultrasonic Sonochem, 2018; 44: 53–63.
 29. Bien J, Wolny L. Changes of some sewage sludge parameters prepared with an ultrasonic field. Water Sci Technology, 1997; 36 (2): 101-106. 
30. Cuihong Z, Hui K, Jiaqing C, Junying C. Study on Sludge Dewatering Ability by Ultrasound Pretreatment. 5th International Conference on Bioinformatics and Biomedical Engineering, Wuhan, 2011.