بررسی کارایی جاذب پوست سخت گردو در حذف نیترات‌ از محلول‌های آبی

نوع مقاله : مقالات پژوهشی

نویسندگان

1 کمیته تحقیقات دانشجویی،‌دانشکده بهداشت، دانشگاه علوم پزشکی مازندران، ساری،‌ایران

2 مهندسی بهداشت محیط، دانشکده بهداشت، دانشگاه علوم پزشکی مازندران، ساری،‌ایران

3 شیمی دارویی، دانشکده داروسازی، دانشگاه علوم پزشکی مازندران، ساری، ایران

4 شیمی دارویی، دانشکده داروسازی، ساری، ایران

5 مهندسی بهداشت محیط، دانشکده بهداشت، دانشگاه علوم پزشکی مازندران

چکیده

مقدمه: غلظت بالای نیترات در آب آشامیدنی برای سلامت مضر است بطوریکه در معده کودکان نیترات به نیتریت احیا شده و بیماری متهموگلوبینما را سبب می‌گردد. بنابراین حذف نیترات آبهای آلوده ضرورت دارد. هدف از این مطالعه تعیین کارایی جاذب پوست سخت گردو در حذف نیترات از محلولهای آبی است.
مواد و روش‌ها: مطالعه بنیادی – کاربردی حاضر در مقیاس آزمایشگاهی و به صورت ناپیوسته انجام گرفته است. ابتدا پوست سخت گردو جمع‌آوری شده و در کوره در دمای 700 درجه سانتیگراد به مدت یک ساعت سوزانده شد. جادب حاصل پس از خرد نمودن در هاون، با الک 20 و 100 مش دانه‌بندی گردید. تاثیر pH ، زمان تماس، دوز جاذب و غلظت اولیه نیترات بر عملکردجذب مورد بررسی قرار گرفت. غلظت نیترات در طول موج‌های 220 و 275 نانومتر توسط دستگاه اسپکتوفتومتر UV به روش استاندارد متد اندازه‌گیری شد. pHPZC جاذب نیز اندازه‌گیری شد.
یافته‌ها: نتایج این مطالعه نشان داد که pH بهینه 9 می‌باشد بطوریکه در pH بالاتر و پائین‌تر از بهینه به ترتیب درصد حذف افزایش و کاهش می‌یابد. راندمان حذف تا زمان تماس تا 120 دقیقه افزایش ولی بعد از 120 دقیقه درصد حذف کاهش یافت. افزایش دوز جاذب و غلظت اولیه‌ی آلاینده به ترتیب سبب افزایش و کاهش راندمان جذب ‌گردید. در شرایط بهینه راندمان حذف نیترات 78 درصد بود.
نتیجه‌گیری: مطالعه حاضر نشان داد که جادب پوست سخت گردو می‌تواند به عنوان یک جاذب ارزان و موثر جهت حذف نیترات مورد استفاده قرار گیرد. فرآیند حذف در محیط قلیایی موثرتر است.

کلیدواژه‌ها


عنوان مقاله [English]

Study on Performance of Walnut Shells Adsorbent in Nitrate Removal from the Aqueous Solutions

نویسندگان [English]

  • sayede samane taheri otaghsara 1
  • Mohammad Ali zazouli 2
  • Mohammad Ali Ebrahimzade 3
  • shahram eslami 4
  • yahya esfandiari 5
1 Student Research Committee, School of Health, Mazandaran University of Medical Sciences, Sari, Iran
2 Department of Environmental Health Engineering, Health Sciences Research Center, Mazandaran University of Medical Sciences, Sari, Iran
3 Pharmaceutical Sciences Research Center, Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Iran
4 , Department of Medicinal Chemistry, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
5 Department of Environmental Health Engineering, Health Sciences Research Center, Faculty of Health, Mazandaran University of Medical Sciences, Sari, Iran
چکیده [English]

Background and purpose: High concentration of nitrate in drinking water can be detrimental to health. It can be reduced to nitrite in children Stomach and lead the methemoglobinemia. Therefore, the removal of nitrate from polluted water is necessary. The purpose of this study is to determine the effectiveness of walnut shell adsorbent in removing nitrates from aqueous solutions.
Materials and methods: This experimental study was conducted in a batch laboratory scale. The walnut shell were collected and burned in the furnace at 700 סC in 1 hours and sieved in 20 -100 mesh. The optimum values of pH, contact time, adsorbent dosage and and the different concentrations of nitrate were experimented in lab scale conditions were determined. The nitrate concentration was measured in wavelength of 220 and 275 nm by spectrophotometer. Also pHpzc of absorbent have been evaluated.
Results: The results showed that optimum pH was 9 so that by increasing and decreasing optimum pH, removal efficiency increase and decrease. The removal efficiency Increased until 120 minutes, but after 120 minutes the percentage of removal was reduced Increasing of adsorbent dosage and the different concentrations of nitrate cause the increase and decrease of adsorbtion respectively. At optimal conditions, nitrate removal efficiency was 78%
Conclusion: The result of the present study shows that walnut shell can be used as an effective and cheap adsorbent for nitrate removal and the process is more efficient at Alkaline pH .

کلیدواژه‌ها [English]

  • Nitrate
  • walnut shell ash
  • adsorption
  • Absorbent
1. Mohseni-Bandpi A, Elliott DJ, Zazouli MA. Biological nitrate removal processes from drinking water supply-a review. Journal of Environmental Health Science and Engineering. 2013;11(1):35. 
2. Zazouli MA, Tilaki RAD, Safarpour M. Modeling nitrate removal by nano-scaled zero-valent iron using response surface methodology. Health Scope. 2014;3(3).
 3. Bhatnagar A, Sillanpää M. A review of emerging adsorbents for nitrate removal from water. Chemical Engineering Journal. 2011;168(2):493-504. 
4. Schick J, Caullet P, Paillaud J-L, Patarin J, Mangold-Callarec C. Batch-wise nitrate removal from water on a surfactantmodified zeolite. Microporous and Mesoporous Materials. 2010;132(3):395-400.
 5. Zazouli MA, Alam Gholilou M. Survey of chemical quality (Nitrate, Flouride, Hardness, Electrical Conductivity) of driking water in Khoy city. Journal of Mazandaran University of Medical Sciences. 2013;22(2):80-4. 
6. Zazouli M, BarafrashtehPour M, BarafrashtehPour Z, Ghalandari V. Temporal and Spatial Variation of Nitrate and Nitrite Concentration in Drinking Water Resource in Kohgiluyeh County Using Geographic Information System. Journal of Mazandaran University of Medical Sciences. 2014;23(109):258-63.
 7. Office of Environmental Health Hazard Assessment.
 8. ISIRI. 
9. World Health Organization. 
10. GHANEIAN M, EHRAMPOUSH M, SAFDARI M, EMAMJOMEH M, ASKARISHAHI M. PERFORMANCE OF OLIVE PIT ASH'S IN NITRATE REMOVAL FROM THE AQUEOUS SOLUTIONS. 2014. 
11. Zazouli M, Safarpour M, Dobaradaran S, Veisi F. Modeling of nitrate removal from aqueous solution by fe-doped TiO2 under UV and solar irradiation using response surface methodology. GLOBAL NEST JOURNAL. 2015;17(2):37988. 
12. Ruppenthal S. Nitrate removal solutions for drinking water: how a flexible approach can deliver reliable results. American Water Works Association Journal. 2007;99(6):28. 
13. Bellona C, Drewes JE, Oelker G, Luna J, Filteau G, Amy G. Comparing nanofiltration and reverse osmosis for drinking water augmentation. Journal (American Water Works Association). 2008;100(9):102-16.
 14. Nataraj S, Hosamani K, Aminabhavi T. Electrodialytic removal of nitrates and hardness from simulated mixtures using ion-exchange membranes. Journal of applied polymer science. 2006;99(4):1788-94. 
15. Yang GC, Lee H-L. Chemical reduction of nitrate by nanosized iron: kinetics and pathways. Water research.
2005;39(5):884-94. 
16. Aslan S, Türkman A. Biological denitrification of drinking water using various natural organic solid substrates. Water science and technology. 2004;48(11-12):489-95.
 17. Shrimali M, Singh K. New methods of nitrate removal from water. Environmental pollution. 2001;112(3):351-9. 
18. Gatkash mE, Younesi ha, Shahbazi a. Nitrate Removal from Aqueous Solution Using Nanoporous MCM-41 Silica Adsorbent Functionalized with Diamine Group WATER AND WASTEWATER. 2011;25(1):69-76. 
19. Öztürk N, Bektaş TE. Nitrate removal from aqueous solution by adsorption onto various materials. Journal of hazardous materials. 2004;112(1):155-62. 20. Shavandi M, Haddadian Z, Ismail M, Abdullah N, Abidin Z. Removal of Fe (III), Mn (II) and Zn (II) from palm oil mill effluent (POME) by natural zeolite. Journal of the Taiwan Institute of Chemical Engineers. 2012;43(5):750-9. 
21. Ghazanfari A, Fung J, Panigarhi S, editors. Some Properties of Composites Made from Blends of Date Pits and High Density Polyethylene. ASABE/CSBE North Central Intersectional Meeting; 2006: American Society of Agricultural and Biological Engineers. 
22. Wolfov, a R, Pertile E, Fečko P. Removal of lead from aqueous solution by walnut shell. Journal of Environmental Chemistry and Ecotoxicology. 2013;5(6):159-67.
 23. Karimi-Jashni A, Saadat S. Investigation of factors affecting removal of nickel by pre-treated walnut shells using factorial design and univariate studies. Iranian Journal of Science and Technology Transactions of Civil Engineering. 2014;38(C1+):309. 
24. Almasi A, Mousavi SA, Hesari A, Janjani H. Walnut shell as a natural adsorbent for the removal of Reactive Red 2 form aqueous solution. 2016.
 25. El-Hendawy A-NA, Samra S, Girgis B. Adsorption characteristics of activated carbons obtained from corncobs. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2001;180(3):209-21. 
26. Saeedi M, Jamshidi A, Abessi O, Bayat J. Removal of dissolved cadmium by adsorption onto walnut and almond shell charcoal: Comparison with granular activated carbon (GAC). J of Water and Wastewater. 2009;70(2):16-22.
 27. Zazouli MA, Belarak D, Karimnezhad F, Khosravi F. Removal of fluoride from aqueous solution by using of adsorption onto modified Lemna minor: Adsorption isotherm and kinetics study. Journal of Mazandaran University of Medical Sciences. 2014;23(109):195-204. 
28. Gill R, Mahmood A, Nazir R. Biosorption potential and kinetic studies of vegetable waste mixture for the removal of Nickel (II). Journal of Material Cycles and Waste Management. 2013;15(2):115-21.
29. Chen H, Zhao J, Dai G, Wu J, Yan H. Adsorption characteristics of Pb (II) from aqueous solution onto a natural biosorbent, fallen Cinnamomum camphora leaves. Desalination. 2010;262(1):174-82.
 30. Ando T, Jige M, Ueno H, Henmi T, Abidin Z, Matsue N. Evaluation of chemical stability of heavy metals in industrial waste slag by infrared spectroscopy. Journal of Material Cycles and Waste Management. 2010;12(4):3027. 
31. Takeda H, Hashimoto S, Iwata T, Honda S, Iwamoto Y. Fabrication of bulk materials with zeolite from coal fly ash. Journal of Material Cycles and Waste Management. 2012;14(4):403-10.
 32. Li W, Zhang L, Peng J, Li N, Zhang S, Guo S. Tobacco stems as a low cost adsorbent for the removal of Pb (II) from wastewater: Equilibrium and kinetic studies. Industrial crops and products. 2008;28(3):294-302.
 33. Arshad M, Beg A, Siddiqui Z. Infrared spectroscopic investigation of tannins. Macromolecular Materials and Engineering. 1969;7(1):67-78.
 34. Isotherm and Kinetics Study of The Adsorption of Chromium (VI) From Aqueous Solution by Zizyphus Spinachristi Leaves Ash Nanoparticles. journal of irrigation science and engineering. 2015;39(4):97-110.
 35. DIVBAND HL, BOROOMANDNASAB S, SHIRAZI P, BIBAK HS,
MAFIGHOLAMI R. Competitive Effects of Iron, Zinc, and Cadmium Ions on Lead Removal from Aqueous Solutions Using the Nanostructured Ash Cedar Absorbent. WATER AND WASTEWATER. 2015;26(3(97)):11-8. 
36. Demiral H, Gündüzoğlu G. Removal of nitrate from aqueous solutions by activated carbon prepared from sugar beet bagasse. Bioresource technology. 2010;101(6):1675-80.
 37. Bhatnagar A, Kumar E, Sillanpää M. Nitrate removal from water by nano-alumina: Characterization and sorption studies. Chemical Engineering Journal. 2010;163(3):31723.
 38. Golstanifar H, Nasseri S, Mahvi A, Dehghani M, Asadi A. Evaluation of aluminum powder efficiency in removal of nitrate from aqueous solutions. Journal of Health. 2011;2(2):36-44. 
39. Farasati M, Jafarzadeh N, Boroomand S, Moazed H, ABEDI KJ, SEYEDIAN M. Use of agricultural nano adsorbents for nitrate removal from aqueous solutions. 2013. 
40. Cengeloglu Y, Tor A, Ersoz M, Arslan G. Removal of nitrate from aqueous solution by using red mud. Separation and Purification Technology. 2006;51(3):374-8.
 41. Xing X, Gao B-Y, Zhong Q-Q, Yue Q-Y, Li Q. Sorption of nitrate onto amine-crosslinked wheat straw: Characteristics, column sorption and desorption properties. Journal of hazardous materials. 2011;186(1):206-11.