تعهد نامه

نوع مقاله : مقالات پژوهشی

نویسندگان

1 گروه مهندسی بهداشت محیط، مرکز تحقیقات ارتقا سلامت، دانشکده بهداشت دانشگاه علوم پزشکی زاهدان، زاهدان، ایران

2 کارشناسی ارشد بهداشت محیط، کمیته تحقیقات دانشجویی، دانشکده بهداشت دانشگاه علوم پزشکی زاهدان، زاهدان، ایران

چکیده

زمینه و هدف: فنل، یکی از رایج‌ترین آلاینده‌های آلی در محیط‌های آبی است. حضور فنل در محیط باعث مشکلات بهداشتی چون سرطان‌زایی، ضربان نامنظم قلب و ... در انسان و سایر موجودات می‌شوند، در نتیجه باید نسبت به حذف آن اقداماتی انجام شود. فرآیند جذب توسط نانوذرات، یکی از روش‌های مؤثر در حذف آلاینده‌هاست. مطالعه حاضر با هدف بررسی کارایی نانوذرات اکسید منیزیم در حذف فنل از محلول‌های آبی انجام شد.
مواد و روش‌ها: در این پژوهش از نانوذرات اکسید منیزیم با اندازه nm 43 استفاده شد. پس از تهیه محلول استوک فنل، اثر پارامترهای (pH (3، 5، 7، 9، 11، زمان تماس (120 ،min (10، 30، 60، 90 و ، دوز جاذب  (100،mg/L (20، 40، 60، 80 و  و غلظت اولیه  (100،mg/L (25، 50، 75 و  فنل مورد بررسی قرار گرفت.
یافته‌ها: نتایج نشان داد که با افزایش pH، زمان تماس و دوز جاذب تا یک محدوده خاص و کاهش غلظت اولیه، راندمان حذف افزایش یافت؛ به‌طوری‌که در pH حدود 11، غلظت اولیه mg/L 50، دوز جاذب mg/L 80 و زمان تماس min60 راندمانی برابر 81 درصد داشت. داده‌های جذب فنل بر نانوذرات اکسید منیزیم از ایزوترم Langmuir و سینتیک pseudo- second order پیروی می‌کنند.
نتیجه‌گیری: نانوذرات اکسید منیزیم قابلیت تقریباً بالایی در حذف فنل دارد و می‌توان از آن به‌عنوان جاذب در حذف فنل از محیط‌های آبی حاوی فنل استفاده کرد.

کلیدواژه‌ها

عنوان مقاله [English]

Investigation of magnesium oxide nanoparticles Efficiency in Phenol removal from aquatic solution

نویسندگان [English]

  • hossein kamani 1
  • ayat hossein panahi 1
  • Somayeh Talebi 2
  • mohamad havangi 2

1 Associated Prof., Dept. of Environmental Health, Health Promotion Research Center, Zahedan University of Medical Sciences Zahedan, Zahedan, Iran

2 M.Sc, Department in Environmental Health, Student Research Committee, Zahedan University of Medical Sciences, Zahedan, Iran.

چکیده [English]

Background and Objectives: Phenol is one of most common organic pollutants in aqueous environments. Phenol presence in the environment can make some health problems such as carcinogenesis, abnormality of heartbeat, etc for humans and poisonous problems for other organisms. Therefore, this pollutant must be removed from polluted effluents to prevent water pollution. Using nanoparticles in adsorption processes is considered as an effective method for contaminants removal. The aim of this study was to investigate the efficiency of magnesium oxide nanoparticles in phenol removal from aqueous solutions.
Materials and Methods:In this research, nanoparticles of magnesium oxide were used with size of 43 nm. After the preparation of phenol stock solution, effects of pH،(3- 5- 7- 9- 11)، contact time(10,30, 60, 90, and 120 min)، MgO dosage(20, 40, 60, 80 and 100 mg/L) and initial concentration of phenol (25, 50, 75 and 100 mg/l) Were  investigated.
Results: Results indicated that the removal efficiency increased with increasing pH, contact time, MgO dosage to a certain range and decreasing initial concentration. Such that the maximum efficiency was equal to 81% in the pH of about 11, initial concentration of 50 mg/L, MgO dosage of 80 mg/l and contact time of 60 min. It was found that adsorption kinetics and equilibrium data follow a pseudo-second-order kinetics model and a Langmuir isotherm model respectively.
Conclusion: This study showed that the magnesium oxide nanoparticles have the ability to remove the phenol and can be used effectively in removing phenol from aqueous solution

کلیدواژه‌ها [English]

  • adsorption
  • phenol
  • Nano practical MgO
  • aqueous solution
 
1.             Hameed B, Rahman A. Removal of phenol from aqueous solutions by adsorption onto activated carbon prepared from biomass material. Journal of Hazardous Materials. 2008;160(2):576-81.
2.             H Biglary, M Afsharinia, A Sajedy. Removal of phenol from aqueous solution by using fly ash plant roots persica 2015;1(3):15-25.(persion)
3.             Suresh S, Srivastava VC, Mishra IM. Adsorptive removal of phenol from binary aqueous solution with aniline and 4-nitrophenol by granular activated carbon. Chemical engineering journal. 2011;171(3):997-1003.
4.             Lazo-Cannata JC, Nieto-Márquez A, Jacoby A, Paredes-Doig AL, Romero A, Sun-Kou MR, et al. Adsorption of phenol and nitrophenols by carbon nanospheres: Effect of pH and ionic strength. Separation and purification Technology. 2011;80(2):217-24.
5.             Busca G, Berardinelli S, Resini C, Arrighi L. Technologies for the removal of phenol from fluid streams: a short review of recent developments. Journal of Hazardous Materials. 2008;160(2):265-88.
6.             Manojlovic D, Ostojic D, Obradovic B, Kuraica M, Krsmanovic V, Puric J. Removal of phenol and chlorophenols from water by new ozone generator. Desalination. 2007;213(1):116-22.
7.             Ghaneian M, Ghanizadeh G. Application of enzymatic polymerization process for the removal of phenol from synthetic wastewater. Iranian Journal of Health and Environment. 2009;2(1):46-55.
8.             Veeresh GS, Kumar P, Mehrotra I. Treatment of phenol and cresols in upflow anaerobic sludge blanket (UASB) process: a review. Water Research. 2005;39(1):154-70.
9.             Fierro V, Torné-Fernández V, Montané D, Celzard A. Adsorption of phenol onto activated carbons having different textural and surface properties. Microporous and mesoporous materials. 2008;111(1):276-84.
10.          Yousef RI, El-Eswed B, Ala’a H. Adsorption characteristics of natural zeolites as solid adsorbents for phenol removal from aqueous solutions: kinetics, mechanism, and thermodynamics studies. Chemical Engineering Journal. 2011;171(3):1143-9.
11.          Balasubramanian A, Venkatesan S. Removal of phenolic compounds from aqueous solutions by emulsion liquid membrane containing ionic liquid [BMIM]+[PF 6]− in tributyl phosphate. Desalination. 2012;289:27-34.
12.          Pazoheshfar S. Survey Removal of phenol from contaminated water using activated carbon and carbon skin almonds and walnuts. Environmental Science and Technology. 2009;10(4):219-33.
13.          Uddin M, Islam M, Abedin M. Adsorption of phenol from aqueous solution by water hyacinth ash. ARPN Journal of Engineering and Applied Sciences. 2007;2(2):11-7.
14.          Githinji LJ, Musey MK, Ankumah RO. Evaluation of the fate of ciprofloxacin and amoxicillin in domestic wastewater. Water, Air, & Soil Pollution. 2011;219(1-4):191-201.
15.          Lin S-H, Juang R-S. Adsorption of phenol and its derivatives from water using synthetic resins and low-cost natural adsorbents: a review. Journal of environmental management. 2009;90(3):1336-49.
16.          Albanis T, Hela D, Sakellarides T, Danis T. Removal of dyes from aqueous solutions by adsorption on mixtures of fly ash and soil in batch and column techniques. Global Nest Int J. 2000;2(3):237-44.
17.          Azlan K, Saime WNW, Liew L. Chitosan and chemically modified chitosan beads for acid dyes sorption. Journal of Environmental Sciences. 2009;21(3):296-302.
18.          Anbia M, Salehi S. Removal of acid dyes from aqueous media by adsorption onto amino-functionalized nanoporous silica SBA-3. Dyes and Pigments. 2012;94(1):1-9.
19.          Wong Y, Szeto Y, Cheung W, McKay G. Equilibrium studies for acid dye adsorption onto chitosan. Langmuir. 2003;19(19):7888-94.
20.          Nagappa B, Chandrappa G. Mesoporous nanocrystalline magnesium oxide for environmental remediation. Microporous and Mesoporous Materials. 2007;106(1):212-8.
21.          Richards R, Mulukutla RS, Mishakov I, Chesnokov V, Volodin A, Zaikovski V, et al. Nanocrystalline ultra high surface area magnesium oxide as a selective base catalyst. Scripta Materialia. 2001;44(8):1663-6.
22.          Bazrafshan E, Kord MF, Heidarinezhad F. Phenol removal from aqueous solutions using Pistachio hull ash as a low cost adsorbent. 2013.
23.          Ong ST, Lee CK, Zainal Z. Removal of basic and reactive dyes using ethylenediamine modified rice hull. Bioresource technology. 2007;98(15):2792-9.
24.          Fatemeh Hashemi, Hatam Godini, Ghodratolah Shams Khoramabadi, Loqman Mansouri.  Assessing performance of walnut green hull adsorbent in removal of phenol from aqueous solutions. 2014;7(2):265-276. (persian)
25.          Mohammad Manshouri1؛ Ahmadreza Yazdanbakhsh؛ Hasti Daraei؛ Determination of the optimum parameters of phenol removal by ostrich feathers and hydrogen peroxide. 2012;23(2):120-6.(persian)
26.          Mohanty K, Das D, Biswas M. Adsorption of phenol from aqueous solutions using activated carbons prepared from Tectona grandis sawdust by ZnCl2 activation. Chemical Engineering Journal. 2005;115(1-2):121-31.
27.          Reza Ansarian؛ Hossein Kermanian؛ Removal of methylene blue dye by sawdust coated with nanoparticles of magnesium oxide. 2017؛ 13(47).  (persian)
28.          Ahmed MJ, Theydan SK. Equilibrium isotherms, kinetics and thermodynamics studies of phenolic compounds adsorption on palm-tree fruit stones. Ecotoxicology and environmental safety. 2012;84:39-45.
29.          Asgari G, Hoseinzadeh E, Taghavi M, Jafari J, Sidmohammadi A. Removal of reactive black 5 from aqueouse solution using catalytic ozonation process with bone char.2012؛ 4(2) :21-30.