تعهد نامه

نوع مقاله : مقالات پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد، گروه ایمنی صنعتی، موسسه آموزش عالی کاسپین، قزوین، ایران.

2 استادیار، گروه ایمنی صنعتی، موسسه آموزش عالی کاسپین، قزوین، ایران.

چکیده

زمینه و هدف: دی­اکسیدکربن موجود در هوا نقش مهمی در افزایش دما دارد و غلظت بالای آن می­تواند بر سلامتی انسان تأثیرگذار باشد. مطالعه حاضر با هدف تعیین میزان دی­اکسیدکربن انتشار یافته در اتمسفر و مقایسه آستانه حد مجاز غلظت دی­اکسیدکربن محیط با استانداردهای جهانی در میدان نفتی یادآوران در سال 1396 انجام شد.
مواد و روش­ها: مطالعه حاضر در سال 1396 در میدان نفتی یادآوران در استان خوزستان انجام شد. در این پژوهش سنجش گازهای متان، دی­اکسیدکربن، مونواکسیدکربن، اکسیژن، دما و رطوبت نسبی در 64 ایستگاه با 3 تکرار با استفاده از دستگاه­های ALTAIR 4X و Trotec مدل BZ30 انجام شد. تجزیه و تحلیل داده­ها با استفاده از نرم­افزار آماری SPSS، ورژن 18 و ANOVA One-way و آزمون‌های Kolmogorov-Smirnov و ضریب Pearson و Spearman انجام گرفت.
یافته­ها: در این مطالعه دامنه غلظت دی­اکسیدکربن و اکسیژن به ترتیب 590-450 و ppm 20/98-19 به‌دست آمد. همچنین بالاترین و پایین­ترین میزان دی­اکسیدکربن به ترتیب 6/36±584/56 و ppm 4/77±453/92 در کمپ آبرسانی (زلال) و چاه S10 بود (0/05>p). بالاترین میزان اکسیژن ppm 0/041±20/92 و در چاه S7 و F12 بود، اما پایین­ترین میزان اکسیژن 0/059±19 و  ppm 0/042±19 و در چاه S10 و F17 به‌دست آمد (0/05<p).
نتیجه ­گیری: بر اساس نتایج تحلیل ضریب پیرسون و اسپیرمن، بین دما، رطوبت، اکسیژن و دی­اکسیدکربن همبستگی مثبت و معنی­داری وجود نداشت. با توجه به نتایج به‌دست آمده، غلظت دی­اکسیدکربن در مناطق مختلف میدان نفتی یادآوران در حد قابل قبول بود.

کلیدواژه‌ها

عنوان مقاله [English]

Correlation analysis of Carbon Dioxide, Oxygen, Temperature and Humidity of Yadavaran Oil field in Khuzestan province

نویسندگان [English]

  • Mohammad velayatzadeh 1
  • Sina Davazdah Emami 2
  • Zahra Naserzadeh 2

1 Master's degree, Industrial Safety Department, Caspian Institute of Higher Education, Qazvin, Iran.

2 Assistant Professor, Industrial Safety Department, Caspian Institute of Higher Education, Qazvin, Iran.

چکیده [English]

Background & Objective:Emission of Carbon dioxide in the atmosphere has an important role in increasing temperatures and, its higher concentration can effect on human health. Due to this issue, this study is aimed to measure the amount of the released carbon dioxide into the atmosphere in different part of Yadavaran Oil field and compare with international standards in 2017.
Material & Methods:The present investigation was accomplished in Yadavaran oil field of Khuzestan province of Iran in 2017. In this study measurement of parameters including carbon dioxide, carbon monoxide, oxygen, relative humidity and temperature was done in 64 stations with 3 replications using ALTAIR 4X and Trotec BZ30. Data was analyzed by one-way ANOVA and Kolmogorov–Smirnov tests. Moreover, Correlation analysis was performed using Pearson and Spearman coefficients.
Results:The results showed that concentration range of carbon dioxide and oxygen was 490-590 and 19-208ppm respectively. Also, the highest and lowest levels of carbon dioxide were 584.56±6.36 and 453.94±77.7 ppm in wet water camp and S10 wells (P <0.05) correspndingly. The highest oxygen content was 20.92±0.041 ppm in S7 and F12 wells, but the lowest oxygen content was 19±0.059 and 19±0.042 in S10 and F17 wells (P> 0.05) in the same order.
Conclusion:Pearson and Spearman coefficient analysis showed no significant correlation between temperature, humidity, oxygen and carbon dioxide. According to the results, the concentration of carbon dioxide in different areas of the oil field of Yadavaran was acceptable.

کلیدواژه‌ها [English]

  • Air pollution
  • bio safety
  • human health
  • Yadavaran Oil Field
  • Khuzestan Province
  1. Katabi Yazdi, D., Esmaili, R., Alidadi, H., Peirovi, R. and Joulaai, F. 2016. Evaluation of Mashhad City Air Quality based on Air Quality Index (AQI), 2015. Iranian Journal of Research in Environmental Health, 2 (3): 228-236.(Abstract in English).
  2. Kermani, M., Dowlati, M., Jonidi Jaffari, A. and Rezaei Kalantari, R. 2015. A Study on the Comparative Investigation of Air Quality Health Index (AQHI) and its application in Tehran as a Megacity since 2007 to 2014. Iranian Journal of Research in Environmental Health, 1 (4): 275-284. (Abstract in English).
  3. Shateri, A. and Torkashvand, M. 2014. Carbon Footprint in Residential Houses. Iranian Conference on Environment and Energy. International Institute for Educational and Research of Kharazmi, Shiraz. 6 pages. (Abstract in English).
  4. Guais, A., Brand, G., Jacquot, L., Karrer, M., Dukan, S., Grevillot, G., Jo Molina, T. and et al. 2011. Toxicity of Carbon Dioxide: A Review. Chemical Research in Toxicology, 24: 2061-2070.
  5. Lambertsen, C.J. 1971. Therapeutic Gases: Oxygen, Carbon Dioxide and Helium, in Drill’s Pharmacology in Medicine (Di Palma, J. R., Ed.) 4th ed., Chapter 55, McGraw-Hill Book Co., New York.
  6. NIOSH. 1976. Criteria for a Recommended Standard, Occupational Exposure to Carbon Dioxide, US Department of Health, Education and Welfare, PuWc Health Service, Washington, DC.
  7. NRC 2007. Carbon Dioxide, in Emergency and Continuous Exposure Guidance Levels for Selected Submarine Contaminants, Vol.1, pp 46-66, The National Academies Press, Washington, DC.
  8. Stinson, J.M. and Mattsson, J.L. 1970. Tolerance of rhesus monkeys to graded increase in environmental CO2- Serial changes in heart rate and cardia rhythm. Aerosp. Med., 42: 78–80.
  9. Schaefer, K.E., Hastings, B.J., Carey, C.R. and Nichols, G. 1963. Respiratory acclimatization to carbon dioxide. J. Appl. Physiol., 18: 1071–1078.
  10. Abolhassani, M., Guais, A., Chaumet-Riffaud, P., Sasco, A. and Schwartz, L. 2009. Carbon dioxide inhalation causes pulmonary inflammation. Am. J. Physiol. Lung. Cell. Mol. Physiol., 296: L657–665.
  11. Douglas, W.H.J., Schaefer, K.E., Messier, A.A. and Pasquale, S.M. 1979. Proliferation of pneumocyte II cells in prolonged exposure to 1% CO2. Undersea Biomed. Res. (Submarine Suppl.), S135–S142.
  12. Ryu, J., Heldt, G.P., Nguyen, M., Gavrialov, O. and Haddad, G.G. 2010. Chronic hypercapnia alters lung matrix composition in mouse pups. J. Appl. Physiol., 109: 203–210.
  13. Schaefer, K.E., Avery, M.E. and Bensch, K. 1964. Time course of changes in surface tension and morphology of alveolar epithelial cells in CO2-induced hyaline membrane disease. J. Clin. Invest., 43: 2080–2093.
  14. Schaefer, K.E., Niemoller, H., Messier, A., Heyder, E. and Spencer, J. 1971. Chronic CO2 Toxicity: Species Difference in Physiological and Histopathological Effects. Report No 656, pp 1_26, US Navy Dept, Bureau of Medicine and Surgery, Naval Submarine Medical Center, Submarine Medical Research Laboratory, Groton, CT.
  15. Hamidi Razi, D. and Feshari, M. 2017. Investigation of Per capita CO2 Dynamics in OPEC Countries (β and σ Convergence Approach). Journal of Environmental Science and Technology, 19 (4): 87-99. (Abstract in English).
  16. Keeling, C.D., Whorf, T.P., Walhen, M. and Van der Plichtt, J. 1995. Interannual extremes in the rate of rise of atmospheric carbon dioxide since 1980. Nature, 375: 666–670.
  17. Bertoni, G., Ciuchini, C. and Tappa, R. 2004. Measurement of long-term average carbon dioxide concentrations using passive diffusion sampling. Atmos. Environ. 38: 1625–1630.
  18. Cox, P.M., Betts, R.A., Jones, C.D., Spall, S.A. and Totterdell, I.J. 2000. Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature, 408: 184–187.
  19. NRC. 2008. Carbon Dioxide, in Spacecraft Maximum Allowable Concentrations for Selected Air born Contaminants, Vol. 5, pp112_124, The National Academies Press, Washington, DC.
  20. Shusterman, D.J. and Balmes, J. R. 1997. A comparison of two methods for determining nasal irritant sensitivity. Am. J. Rhinol., 11: 371–378.
  21. Ashrafi, Kh. and Ahmadi Orkomi, A. 2014. Atmospheric stability analysis and its correlation with the concentration of air pollutants: A case study of a critical air pollution episode in Tehran. Iranian Journal of Geophysics, 8 (3): 49-61. (Abstract in English).
  22. Najafpoor, A.A., Jonidi Jaffari, A. and Doosti, S. 2015. Trend analysis Air Quality index criteria pollutants (CO, NO2, SO2, PM10 and O3) concentration changes in Tehran metropolis and its relation with meteorological data, 2001-2008. Journal of Health in the field, 3 (2): 17.26.
  23. Mousavi, M.H. and Homami, M. 2014. Modeling the Effect of Greenhouse Gas Emission Dioxide on Global Warming. Science and Environmental Engineering, 1 (2): 9-21. (Abstract in English).
  24. Neil, B. and Hampson, M.D. 2011. Residential carbon monoxide poisoning from motor vehicles. American Journal of Emergency Medicine, 29: 75–77.
  25. Esfahbodi, A.M. and Shafipoor, M. 2017. Evaluation and measurement of CO, SO2, NO2 and particles in parking area of Imam Reze Shrine. Journal of Environmental Sciences Studies, 1 (3): 19-24. (Abstract in English).
  26. Park, S.D., Kim, J.G., Kim, W.H. and Kim, H.S. 2005. Distribution of tritium in the leachates and methane gas condensates from municipal waste landfills in Korea. Water and Environment Journal, 19 (2): 91-99.
  27. Mari Oriyad, H., Zare Derisi, F., Jahangiri, M., Rismanchian, M. and Karimi, A. 2014. Evaluation of Heating, Ventilation, and Air conditioning (HVAC) System Performance in an Administrative Building in Tehran (Iran). Journal of Health and Safety at Work, 4 (3): 59-67. (Abstract in English).
  28. Taghavi, L. 2014. The Role of the Green Roofs and Walls on Sustainable Urban Development (Case study: Tehran City). Sustainability, Development & Environment, 1 (1): 19-36. (Abstract in English).
  29. Sharma, S.C. and Roy, R.K. 1997. Green belt-an effective means of mitigating industrial pollution.Indian Journal of Environmental Protection, 17: 724-727.
  30. Shannigrahi, A.S., Sharma, R.C. and Fukushima, T. 2003. Air Pollution Control by Optimal green belt development for Victoria Memorial Monument, Kolkata (India). International Journal of Environmental Studies, 60 (3): 241-249.