تعهد نامه

نوع مقاله : Research Paper

نویسندگان

1 دانشجوی دکتری، گروه مهندسی بهداشت محیط، دانشکده علوم پزشکی، دانشگاه تربیت مدرس، تهران، ایران

2 دانشیار گروه مهندسی بهداشت محیط، دانشکده علوم پزشکی، دانشگاه تربیت مدرس، تهران، ایران.

3 استاد گروه مهندسی بهداشت محیط، دانشکده علوم پزشکی، دانشگاه تربیت مدرس، تهران، ایران

چکیده

زمینه و هدف: فیلتر سیگار از پسماندهای خطرناک شهری بوده و هدف این مطالعه، بررسی فرآیند کربونیزاسیون هیدروترمال برای تولید هیدروچار با بیشترین ارزش حرارتی و بازده جرمی از این پسماند بوده است.

مواد و روش‌ها: فرآیند کربونیزاسیون هیدروترمال در راکتور بسته و با استفاده از طراحی آزمایش سطح-پاسخ روی فیلترهای سیگار انجام شد. اثر متغیرهای مستقل دما (300-180 درجه سانتی‌گراد)، زمان واکنش (360-30 دقیقه) و نسبت مایع-به-جامد (۱:۱ تا 1:10) بر ارزش حرارتی و بازده جرمی بررسی گردید. هیدروچار تولیدی با آنالیزهای CHNSO، BET،SEM  و FTIR  بررسی شد.

یافته‌ها: نتایج نشان داد که مدل درجه دوم با R2 0/9911 و 0/9893 به‌ترتیب با داده‌های ارزش حرارتی و بازده جرمی برازش دارد. تحلیل واریانس نیز معناداری اثر متغیرهای مستقل و برخی برهمکنش‌ها را تأیید و شرایط بهینه برای حداکثر ارزش حرارتی (28/75 مگاژول بر کیلوگرم) و بازده جرمی (74/91 درصد) در دمای ۲۳۲ درجه سانتی‌گراد، زمان ۹۷ دقیقه و نسبت مایع-به-جامد 1:3 به‌دست آمد. سطح ویژه هیدروچار (10/11 مترمربع بر گرم) نسبت به ماده اولیه (18/64 مترمربع بر گرم) کاهش و طیف FTIR  افزایش شدید باند هیدروکسیل (O-H) در محدوده 3200-3700 بر سانتیمتر و پایداری نسبی گروه‌های کربونیل (C=O) و آلکیل (C-H) را نشان داد. نسبت‌های اتمی H/C در هیدروچار از 2/23 به 1/13 و O/C نیز از 0/57 به 0/41 تغییر و بر طبق نمودار ون‌کرولن در منطقه سوخت‌های با بلوغ کربنی بالاتر رسید.

نتیجه‌گیری: نتایج نشان داد که فرآیند کربونیزاسیون هیدروترمال می‌تواند به‌طور مؤثری پسماند فیلتر سیگار را به هیدروچار با کیفیت سوختی مناسب تبدیل کند. 

کلیدواژه‌ها

عنوان مقاله [English]

Investigation of Hydrothermal Carbonization Process for Optimizing Hydrochar Production from Cigarette Filter Waste

نویسندگان [English]

  • Ebrahim Yazdani 1
  • Sakine Shekoohiyan 2
  • Gholamreza Moussavi 3

1 Ph.D. Student, Department of Environmental Health Engineering, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.

2 Associate Professor, Department of Environmental Health Engineering, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.

3 Professor, Department of Environmental Health Engineering, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.

چکیده [English]

Background and Objective: Cigarette filters are hazardous municipal solid waste. This study investigated hydrothermal carbonization to produce hydrochar with maximum higher heating value and mass yield from this waste. 

Materials and Methods: The process was conducted in a batch reactor using response surface methodology on cigarette filters. The effects of temperature (180-300 °C), time (30-360 min), and liquid-to-solid ratio (1:1-10:1) on higher heating value and mass yield were evaluated. Hydrochar was characterized via CHNSO, BET, SEM, and FTIR analyses.

Results: A quadratic model fitted the data well, with R² values of 0.9911 and 0.9893 for heating value and mass yield, respectively. Analysis of variance confirmed the significance of independent variables and some interactions. Optimal conditions for maximum heating value (28.75 MJ/kg) and mass yield (74.91%) were 232 °C, 97 min, and a 3:1 liquid-to-solid ratio. Hydrochar surface area (10.11 m²/g) decreased compared to the feedstock (18.64 m²/g). FTIR revealed intensified hydroxyl (O-H) bands (3700-3200 cm⁻¹) and stable carbonyl (C=O) and alkyl (C-H) groups. Atomic H/C and O/C ratios changed from 2.23 to 1.13 and 0.57 to 0.41, respectively, indicating higher carbon maturity on the Van Krevelen diagram.

Conclusion: Hydrothermal carbonization can effectively convert cigarette filter waste into hydrochar with suitable fuel quality.
 
Open Access Policy: This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/

کلیدواژه‌ها [English]

  • Analysis of Variance
  • Cellulose Acetate
  • Hydrothermal Carbonization
  • Waste Management
  1. Munir MT, Mansouri SS, Udugama IA, Baroutian S, Gernaey KV, Young BR. Resource recovery from organic solid waste using hydrothermal processing: Opportunities and challenges. Renewable and Sustainable Energy Reviews. 2018;96:64-75. https://doi.org/10.1016/j.rser.2018.07.039
  2. Torkashvand J, Farzadkia M, Sobhi HR, Esrafili A. Littered cigarette butt as a well-known hazardous waste: A comprehensive systematic review. Journal of Hazardous Materials. 2019;383:121242. https://doi.org/10.1016/j.jhazmat.2019.121242 PMid:31563043
  3. Smith EA, Novotny TE. Whose butt is it? Tobacco industry research about smokers and cigarette butt waste. Tobacco control. 2011;20(Suppl 1):i2-i9. https://doi.org/10.1136/tc.2010.040105 PMid:21504919 PMCid:PMC3088475
  4. Mutuku J. Cleaning up plastic pollution in marine environ: a case study of Australian waters': University of Tasmania; 2024.
  5. Mohamed D, Fayad A, Mohamed A-MO, Al Nahyan MT. Transforming Waste into Wealth: The Role of E-Waste in Sustainable Mineral Resource Management. 2025. https://doi.org/10.20944/preprints202503.0024.v1
  6. Shah G, Bhatt U, Soni V. A comprehensive review on triple R eco-management strategies to reduce, reuse and recycle of hazardous cigarette butts. Heliyon. 2023;9(6). https://doi.org/10.1016/j.heliyon.2023.e16642 PMid:37292331 PMCid:PMC10245253
  7. Battista F. Reclaiming cigarette butts: biorefinery technologies toward circular waste valorization. Resources, Conservation and Recycling. 2025;222:108470. https://doi.org/10.1016/j.resconrec.2025.108470
  8. Mohajerani A, Kadir AA, Larobina L. A practical proposal for solving the world's cigarette butt problem: Recycling in fired clay bricks. Waste management. 2016;52:228-44. https://doi.org/10.1016/j.wasman.2016.03.012 PMid:26975623
  9. Yousef S, Eimontas J, Zakarauskas K, Striūgas N. Pyrolysis of cigarette butts as a sustainable strategy to recover triacetin for low-cost and efficient biodiesel production. Journal of Analytical and Applied Pyrolysis. 2023;175:106167. https://doi.org/10.1016/j.jaap.2023.106167
  10. Cabrera FC. Eco‐friendly polymer composites: A review of suitable methods for waste management. Polymer Composites. 2021;42(6):2653-77. https://doi.org/10.1002/pc.26033
  11. De Cesaris MG. Recycling of cigarette filters: recovery of cellulose acetate for the preparation of low-cost sorbent materials. 2025.
  12. Conradi M, Sánchez-Moyano JE. Toward a sustainable circular economy for cigarette butts, the most common waste worldwide on the coast. Science of The Total Environment. 2022;847:157634. https://doi.org/10.1016/j.scitotenv.2022.157634 PMid:35905959
  13. Bangalore M, Hochman G, Zilberman D. Policy incentives and adoption of agricultural anaerobic digestion: A survey of Europe and the United States. Renewable Energy. 2016;97:559-71. https://doi.org/10.1016/j.renene.2016.05.062
  14. Shen Y. A review on hydrothermal carbonization of biomass and plastic wastes to energy products. Biomass and Bioenergy. 2020;134:105479. https://doi.org/10.1016/j.biombioe.2020.105479
  15. Román S, Libra J, Berge N, Sabio E, Ro K, Li L, et al. Hydrothermal Carbonization: Modeling, Final Properties Design and Applications: A Review. Energies. 2018;11(1):216. https://doi.org/10.3390/en11010216
  16. Ong M, Nomanbhay S, Rosman C, Yusaf T, Silitonga A, editors. Hydrochar production through co-hydrothermal carbonization of water hyacinth and plastic waste. IOP Conference Series: Earth and Environmental Science; 2024: IOP Publishing. https://doi.org/10.1088/1755-1315/1372/1/012034
  17. Ischia G, Berge ND, Bae S, Marzban N, Román S, Farru G, et al. Advances in Research and Technology of Hydrothermal Carbonization: Achievements and Future Directions. Agronomy. 2024;14(5):955. https://doi.org/10.3390/agronomy14050955
  18. Ahmed MJ, Hameed BH, Khan MA. Recent progress on carbonaceous materials-based adsorbents derived from cigarette wastes for sustainable remediation of aquatic pollutants: A review. Journal of Analytical and Applied Pyrolysis. 2024;183:106779. https://doi.org/10.1016/j.jaap.2024.106779
  19. Behvandi D, Arefizadeh M, Ghaemi A, Shahhosseini S. Optimization of hydrochar production from cigarette filters for enhanced CO2 adsorption. Results in Engineering. 2024;22:102308. https://doi.org/10.1016/j.rineng.2024.102308
  20. Čolnik M, Irgolič M, Škerget M. Hydrothermal decomposition of virgin and waste polylactic acid with subcritical water under N2 and air atmospheres. Polymer Testing. 2025;146:108783. https://doi.org/10.1016/j.polymertesting.2025.108783
  21. Sabnis A, Wadajkar AS, Aswath P, Nguyen KT. Factorial analyses of photopolymerizable thermoresponsive composite hydrogels for protein delivery. Nanomedicine: Nanotechnology, Biology and Medicine. 2009;5(3):305-15. https://doi.org/10.1016/j.nano.2008.11.003 PMid:19231314 PMCid:PMC2735603
  22. Afolabi OOD, Sohail M, Cheng Y-L. Optimisation and characterisation of hydrochar production from spent coffee grounds by hydrothermal carbonisation. Renewable Energy. 2020;147:1380-91. https://doi.org/10.1016/j.renene.2019.09.098
  23. American Society for Testing and Materials (ASTM), Standard Test Method for Moisture in the Analysis Sample of Coal and Coke (ASTM D3173-11). 2017.
  24. American Society for Testing and Materials (ASTM), Standard Test Method for Volatile Matter in the Analysis Sample of Coal and Coke (ASTM D3175). 2020.
  25. American Society for Testing and Materials (ASTM), Standard Practice for Proximate Analysis of Coal and Coke (ASTM D3172). 2021.
  26. American Society for Testing and Materials (ASTM), Standard Test Method for Ash in the Analysis Sample of Coal and Coke from Coal (ASTM D3174). 2018.
  27. American Society for Testing and Materials (ASTM), Standard Test Method for Gross Calorific Value of Refuse-Derived Fuel by the Bomb Calorimeter (ASTM E711). 2023.
  28. Ghalandari V, Smith H, Volpe M, Messineo A, Reza T. Effect of acidic hydrochar on plastic crude oil produced from hydrothermal liquefaction of waste PVC. Processes. 2022;10(12):2538. https://doi.org/10.3390/pr10122538
  29. Onuegbu IV, Gunorubon AJ. Characteristics and Composition Analysis of Municipal Solid Waste in Port Harcourt City, Nigeria-A Prelude to Methane Emission Estimation in the City's Dump Sites. International Journal of Scientific & Engineering Research. 2004;9:2004-9.
  30. Omari AM. Characterization of Municipal solid waste for energy recovery. Journal of multidisciplinary engineering science and technology. 2015;2(1):3159-40.
  31. Gamgoum R, Dutta A, Santos RM, Chiang YW. Hydrothermal conversion of neutral sulfite semi-chemical red liquor into hydrochar. Energies. 2016;9(6):435. https://doi.org/10.3390/en9060435
  32. Islam MT, Reza MT. Evaluation of fuel and combustion properties of hydrochar derived from Co-hydrothermal carbonization of biomass and plastic. Biomass and Bioenergy. 2023;172:106750. https://doi.org/10.1016/j.biombioe.2023.106750
  33. Funke A, Ziegler F. Hydrothermal carbonization of biomass: A summary and discussion of chemical mechanisms for process engineering. Biofuels, Bioproducts and Biorefining. 2010;4(2):160-77. https://doi.org/10.1002/bbb.198
  34. Reza MT, Yan W, Uddin MH, Lynam JG, Hoekman SK, Coronella CJ, et al. Reaction kinetics of hydrothermal carbonization of loblolly pine. Bioresource Technology. 2013;139:161-9. https://doi.org/10.1016/j.biortech.2013.04.028 PMid:23651600
  35. Kambo HS, Dutta A. A comparative review of biochar and hydrochar in terms of production, physico-chemical properties and applications. Renewable and Sustainable Energy Reviews. 2015;45:359-78. https://doi.org/10.1016/j.rser.2015.01.050
  36. Lima HHC, Maniezzo RS, Kupfer VL, Guilherme MR, Moises MP, Arroyo PA, et al. Hydrochars based on cigarette butts as a recycled material for the adsorption of pollutants. Journal of Environmental Chemical Engineering. 2018;6(6):7054-61. https://doi.org/10.1016/j.jece.2018.11.012
  37. Berge N, Ro K, Mao J, Flora J, Chappell M, Bae S. Hydrothermal Carbonization of Municipal Waste Streams. Environmental science & technology. 2011;45:5696-703. https://doi.org/10.1021/es2004528 PMid:21671644
  38. De Lima H, dos Santos Maniezzo R, Kupfer V, Guilherme M, P. Moisés M, Arroyo P, et al. Hydrochars based on cigarette butts as a recycled material for the adsorption of pollutants. Journal of Environmental Chemical Engineering. 2018. https://doi.org/10.1016/j.jece.2018.11.012
  39. Yogaswara D, Cordova M, Shofarudin U. A preliminary investigation of associated chemicals in cigarette butt waste from the tourist beach area of North Jakarta, Indonesia. BIO Web of Conferences. 2024;106:02001. https://doi.org/10.1051/bioconf/202410602001
  40. Wilkinson E, Stack M, Hoh E, Poletti S, Mladenov N, Youssef G. Cigarette filters: a benchmarking investigation of thermal and chemical attributes. Cellulose. 2024;31(17):10359-73 https://doi.org/10.1007/s10570-024-06202-2
  41. UKEssays. November 2018. IR spectroscopy of cigarette smoke. [online]. Available from: https://www.ukessays.com/essays/chemistry/ir-spectroscopy-of-cigarette-smoke.php?vref=1 [Accessed 7 June 2025].
  42. Satira A, Paone E, Bressi V, Iannazzo D, Marra F, Calabrò PS, et al. Hydrothermal Carbonization as Sustainable Process for the Complete Upgrading of Orange Peel Waste into Value-Added Chemicals and Bio-Carbon Materials. Applied Sciences. 2021;11(22):10983. https://doi.org/10.3390/app112210983
  43. Petrović J, Simić M, Mihajlović M, Koprivica M, Kojić M, Nuić I. Upgrading fuel potentials of waste biomass via hydrothermal carbonization. Hemijska industrija. 2021;75(5):297-305. https://doi.org/10.2298/HEMIND210507025P
  44. Lin Y, Xu H, Gao Y, Zhang X. Preparation and characterization of hydrochar-derived activated carbon from glucose by hydrothermal carbonization. Biomass Conversion and Biorefinery. 2021;13. https://doi.org/10.1007/s13399-021-01407-y
  45. Holliday MC, Parsons DR, Zein SH. Microwave-Assisted Hydrothermal Carbonisation of Waste Biomass: The Effect of Process Conditions on Hydrochar Properties. Processes. 2022;10(9):1756. https://doi.org/10.3390/pr10091756
  46. Wilkinson E, Hoh E, Stack M, Mladenov N, Youssef G. Thermal, Physical, Chemical, and Mechanical Properties of Cellulose Acetate From Cigarette Filters. Journal of Applied Polymer Science. 2025;142. https://doi.org/10.1002/app.56946
  47. He M, Cao Y, Xu Z, You S, Ruan R, Gao B, et al. Process water recirculation for catalytic hydrothermal carbonization of anaerobic digestate: Water-Energy-Nutrient Nexus. Bioresource Technology. 2022;361:127694. https://doi.org/10.1016/j.biortech.2022.127694 PMid:35905882
  48. Hoekman SK, Broch A, Robbins C. Hydrothermal carbonization (HTC) of lignocellulosic biomass. Energy & Fuels. 2011;25(4):1802-10. https://doi.org/10.1021/ef101745n
  49. Libra JA, Ro KS, Kammann C, Funke A, Berge ND, Neubauer Y, et al. Hydrothermal carbonization of biomass residuals: a comparative review of the chemistry, processes and applications of wet and dry pyrolysis. Biofuels. 2011;2(1):71-106. https://doi.org/10.4155/bfs.10.81
  50. Yuan H, Lu T, Huang H, Zhao D, Kobayashi N, Chen Y. Influence of pyrolysis temperature on physical and chemical properties of biochar made from sewage sludge. Journal of Analytical and Applied Pyrolysis. 2015;20. https://doi.org/10.1016/j.jaap.2015.01.010
  51. Reza MT, Andert J, Herklotz B, Busch D, Pielert J, Lynam J, et al. Review Article: Hydrothermal Carbonization of Biomass for Energy and Crop Production. Applied Bioenergy. 2014;1. https://doi.org/10.2478/apbi-2014-0001
  52. Lu X, Ma X, Chen X, Yao Z, Zhang C. Co-hydrothermal carbonization of polyvinyl chloride and corncob for clean solid fuel production. Bioresource Technology. 2020;301:122763. https://doi.org/10.1016/j.biortech.2020.122763 PMid:31972403
  53. Reza MT. Upgrading biomass by hydrothermal and chemical conditioning: University of Nevada, Reno; 2013.
  54. He Q, Cheng C, Raheem A, Ding L, Lam SS, Yu G. Effect of hydrothermal carbonization on woody biomass: From structure to reactivity. Fuel. 2022;330:125586. https://doi.org/10.1016/j.fuel.2022.125586
  55. Zhao P, Lin C, Li Y, Zhang J, Huang N, Cui X, et al. Combustion and slagging characteristics of hydrochar derived from the co-hydrothermal carbonization of PVC and alkali coal. Energy. 2022;244:122653. https://doi.org/10.1016/j.energy.2021.122653
  56. Zhang X, Zhang L, Li A. Co-hydrothermal carbonization of lignocellulosic biomass and waste polyvinyl chloride for high-quality solid fuel production: Hydrochar properties and its combustion and pyrolysis behaviors. Bioresource technology. 2019;294:122113. https://doi.org/10.1016/j.biortech.2019.122113 PMid:31542495
  57. Yahav Spitzer R, Belete YZ, Johnson HA, Kolusheva S, Mau V, Gross A. Hydrothermal carbonization reaction severity as an indicator of human-excreta-derived hydrochar properties and it's combustion. Science of The Total Environment. 2023;872:162176. https://doi.org/10.1016/j.scitotenv.2023.162176 PMid:36775163