تعهد نامه

نوع مقاله : Research Paper

نویسندگان

1 گروه شیلات، واحد اهواز، دانشگاه آزاد اسلامی، اهواز، ایران

2 گروه مهندسی شیمی، واحد اهواز، دانشگاه آزاد اسلامی، اهواز، ایران

چکیده

زمینه ­و ­هدف: نیترات به‌عنوان یکی از شاخص‌های شیمیایی آلودگی آب مورد بررسی قرار می‌گیرد. نیترات به دلیل حلالیت بالا در آب، رایج­ترین آلاینده محسوب می­شود که می­تواند سلامت انسان را تهدید کند. مطالعه حاضر با هدف بررسی حذف نیترات از محیط­های آبی با استفاده از نانوکامپوزیت Fe3O4/ZnO/cellulose انجام شد.
مواد و روش­ها: این تحقیق به‌صورت تجربی در یک رآکتور ناپیوسته انجام شد. متغیرهای مؤثر بر فرآیند جذب شامل: pH (2، 4، 6، 8 و 10)، زمان تماس (25، 50، 75، 100، 125، 150، 175، 200، 225، 250، 275 و 300 دقیقه)، غلظت نیترات (0، 50، 100، 150، 200 و 250 میلی­گرم بر لیتر)، دوز جاذب (0، 2، 4، 6، 8 و 10 گرم بر لیتر) و سرعت اختلاط (0، 50، 100، 150، 200 و 250 دور بر دقیقه) بودند. سینتیک و ایزوترم‌های جذب نیز تعیین شد. برای اندازه‌گیری غلظت نیترات از دستگاه اسپکتوفتومتری و برای تعیین خصوصیات جاذب از میکروسکوپ الکترونی روبشی و طیف­سنج مادون قرمز استفاده شد.
یافته ­ها: بر اساس نتایج، pH بهینه جذب 6 بود و با افزایش زمان تماس، مقدار جاذب و راندمان جذب افزایش یافت. سطح ویژه جاذب 10 مترمربع بر گرم به‌‌دست‌ آمد. آزمایش FTIR نشان داد که گروه­های عاملی موجود بر روی جاذب، نقش مهمی در جذب نیترات داشتند. داده­های آزمایشگاهی از سینتیک درجه دوم تبعیت نموده و همچنین ایزوترم فروندلیچ برای توصیف فرآیند جذب، مطابقت بهتری داشت.
نتیجه ­گیری: با توجه ‌به نتایج به‌‌دست ‌آمده، نانوکامپوزیت Fe3O4/ZnO/cellulose می­تواند نیترات را با راندمان بالایی از محلول آبی جذب نماید.

کلیدواژه‌ها

عنوان مقاله [English]

Laboratory and synthetic study of nitrate removal from water by adsorbent

نویسندگان [English]

  • Laleh Roomiani 1
  • Mahsa Mostofipour 2

1 Department of Fisheries, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran

2 Department of Chemical Engineering, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran

چکیده [English]

Background and purpose: Nitrate is used as a chemical water quality indicator. The aim of this work was investigation of nitrate adsorption from aqueous solution by Nanocomposite celloluse/Fe3O4/ZnO as a efficient adsorption.
Materials and methods: This study was conducted in a laboratory batch reactor. The most important variables affecting adsorption process were pH (2, 4, 6, 8, 10), time (25, 50, 75, 100, 125, 150, 175, 200, 250, 300 min), nitrate concentration (0, 50, 100, 150, 200, 250 mg/L), adsorption dose (0, 2, 4, 6, 8, 10 g/ L), Mixing speed (0, 50, 100, 150, 200 r/ min) investigated and adsorption kinetic and isotherms were determinated. Spectrophotometer was used for nitrate measurement and adsorbent characteristics were determined by SEM and FTIR examinations
Results: The results showed the optimum pH=6 and nitrate adsorption increased by increasing contact time and adsorbent dosage. The adsorbent specific surfact area of 10 m2/g was obtained and FTIR test revealed the finctional groups existing on adsorbent surface to have important role in nitrate adsorption. Experimental data was well fitted by pseudo second-order kinetic model. Langmuir isotherm model best represented the experimental data to describe adsorption.
Conclusion: Results showed that the nanocomposite cellulose/Fe3O4/ZnO can efficiently remove nitrate from aqueous solution

کلیدواژه‌ها [English]

  • "Adsorption
  • " "Aqueous solution"
  • "Nanocomposite
  • " "Nitrate removal"
  1. Zazouli MA. Ebrahimizadeh MA. Taheri Otaghsara SS. Eslami SH. Esfandiari Y. Study on performance of walnut shells adsorbent in nitrate removal from the aqueous solutions. J Research in Environmental Health (persion) 2019; 5(2):144-153.
  2. Alidadi H. Dolatabadi M. Mehrabpour M. Evaluation of clinoptilolite modified by cationic surfactant for Nitrate removal from aqueous solutions )persion). Research in Environmental Health 2017; 3(1): 29-21.
  3. Gasemi M. Farhang M. Morovati M. Mahmoudi M. Ebrahimi S. Abedi A. Investigation of potential human health risks from fluoride and nitrate via water consumption in Sabzevar, Iran. International Journal of Environmental Analytical Chemistry 2020. https://doi.org/10.1080/03067319.2020.1720668
  4. Ghasmi M. Afsharnia M. Farhang M. Ghaderpoori M. Karimi A. Abbasi H. Zarei A. Spatial distribution of fluoride and nitrate in groundwater and its associated human health risk assessment in residents living in Western Khorasan Razavi, Iran )persion). Desalination and Water Treatment 2019; 170: 176-186.
  5. Hu Q. Liu H. Zhang Z. Xie Y. Nitrate removal from aqueous solution using polyaniline modified activated carbon: Optimization and characterization. J Molecular Liquids 2020; 309:113057
  6. Mohammadi F. Hasheminejad H. Taebi A. Sorption of chrumium (VI) using excess minicipal sludge )persion). Water and Wastewater 2014; 25(1); 89.
  7. Hassan Nezhad S. Yavari MA. An overview of various methods for removing heavy metals from water and wastewater. National Conference on Research and Development in Civil Engineering, Architecture and Modern Urbanism 2017.
  8. Hami Z. Salarian AA. Synthesis and loading of nanocurcumin on iron magnetic nanoparticles modified with chitosan )persion). Tehran University Medical 2020; 77(11): 715-19.
  9. Dehghani T. Gholami Sefidkoohi MA. Khoshravesh M. Nitrate removal from aqueous solutions using micro and nano particles of beech leaves )persion). Soil and Water Research 2020; 51.
  10. Mazarji M. Sabouhi M. Amin zadeh Gohar rizi B. Baghdadi M. Pardakhti A. Modification of granular activated carbon with post-treatment to enhance nitrate removal from drinking water. Water and Wastewater 2017; 2(28):108.
  11. Dorri M. Chamani A. Nourouzi M. Nitrate removal from water and wastewater by Myriophyllum spicatum and Ruppia maritima. J Natural Environment 2021;(4)73:86-67.
  12. Hooshmand A. Divband Hafshejani L. Naseri A. Compare of biochar and vermicompost sugarcane bagasse performance on nitrate removal from contaminated water and determine the optimum conditions for adsorption process )persion). Iranian J Irrigation & Drainage 2016; 10(1): 104-16.
  13. Karimi Pasandideh E. Rezai R. Nasseri S. Efficiency of magnetic iron oxid nanoparticles coated with silica in removal natural organic matter from water )persion). J Health and Environment 2015; 7(3): 289-300.
  14. Shojae A. Ghaforian H. Yadgarian L. Lari K. Sadatipour M. Evaluation of the efficiency of advanced oxidation process based on catalytic ozonation in the presence of synthesized zinc oxide (Zno) nanoparticles in the removal of volatile organic compounds (VOCS) in polluted air. Research in Environmental Health 2020; 7(1): 41-27.
  15. Fazlzadeh M. Adhami S. Vosoughi M. Khosravi R. Sadigh A. Nitrate ion adsorption from aqueous solution by a novel local green montmorillonite adsorbent )persion). J Healt and Hygiene 2017; 8.
  16. Alidade H. Dolatabadi M. Mehrabpour M. Evaluation of clinoptilolite modified by cationic surfactantfor nitrate removal from aqueous solutions 2017; 3(1): 21-29.
  17. Sheykhali Z. Zarabi M. Varaste Khanlar Z. Removal of nitrogen nitrate from aqueous solutions with modified walnut shell. 15th Iranian Soil Science Congress 2017; 1-6.
  18. Bafkar A. Baboli N. Investigation of the efficiency of nitrate removal from aqueous solution using oak leaf nanostructure adsorbent. J Water and Soil Conservation 2019: 25(5).

19.Alighardashi A. Kashitarash Esfahani Z. Najafi F. Efficiency evaluation of nitrate removal from synthetic solutions by dendrimer-graphene oxide nano-composite activated with HCl. Water and Wastewater 2019; 30.

  1. Golstanifar H. Nasseri S. Dehghani MH. Asadi A. Nitrate removal from groundwater resources using nano-gamma-alumina and determining the adsorption isotherms )persion). Iranian J of Health and Environment 2012; 5(4): 457-68.
  2. Fazlzadeh M. Adhami SH. Vosoughi M. Khosravi R. Sadigh A. Nitrate ion adsorption from aqueous by a novel local green montmorillonite adsorbent (persion). J Enviromental Healt 2017; 8(3): 298-311.
  3. He Y. Lin H. Dong Y. Li B. Wang L. Chu S. Luo M. Liu J. Zeolite supported Fe/Ni bimetallic nanoparticles for simultaneous removal of nitrate and phosphate: synergistic effect and mechanism. Chemical engineering 2018; 347: 669-81.
  4. Krueger BC. Fowler GD. Templeton MR. Resource recovery and biochar characteristics from full-scale faecal sludge treatment and co-treatment with agricultural waste. Water Research 2020;169:115.
  5. Riazian M. Yousefpoor M. Photo-degradation of methylene orange by zinc-sulfide nanoparticles synthesized via hydrothermal method. Iranian J Health and Environment 2021; 14(1).
  6. Mohseni Bandpi A. Jonidi Jafari A. Rezaei Kalantary R. Removal of nitrate from water using supported zero-valent nano Iron on zeolite )persion). Iranian J Health and Environment 2012; 5(3): 343-54.
  7. Ghafarinejzad A. Rezaee A. Akbari Z. Simultaneous removal of nitrate and microbial pollution from water by the electro-catalytic activity of iron and magnetic nanoparticles supported on nickel foam )persion). Iranian J of Health and Environment 2022; 15(2): 331-44.
  8. Amininejad M. Boromandnasab S. Farasati M. Evaluation of nitrate removal from aqueous solution by nanostructure of Conocarpus. Iranian J Irrigation & Water Engineering 2019; 10(37).
  9. Sowmya A. Meenakshi S. Effective removal of nitrate and phosphate anions from aqueous solutions using functionalised chitosan beads )persion). Desalination and Water Treatment 2014; 52(13-15): 2583-93.

29.Divband hafshejani L. Mortazavi ghanavati P. Boromandnasab S. Isitherm and kinetics study of the adsorption of chrimium (VI) from aqueous solution by zizyphus Spain - christil leves ash nanoparticles. Plant Production 2017; 39.

  1. Noori Shamsi MH. Jafari M. Shahin M. A review on natural adsorbents nano-adsorbents based on chitosan for removal of metal contaminants from water. Applied Research in Chemical- Polymer Engineering 2018; 44-60
  2. Salehi E. Goodarzi M. Sanaeepur H. Khademian E. Removal of lead ions from aqueous solutions by adsorbtion operation )persion). J Environmental Health Science 2018; (1): 28-3.
  3. Sheshmani SH. Arab Fashapouyeh M. Amini R. Iron III hydroxide graphene oxide nanocomposite and investigation of lead absorption using it )persion). JARC 2012; 6: 17-23.