تعهد نامه

نوع مقاله : مقالات پژوهشی

نویسندگان

1 دانشجوی دکتری تخصصی مهندسی پلیمر ، دانشکده مهندسی شیمی، دانشکدگان فنی، دانشگاه تهران

2 دانشجوی دکتری مهندسی پلیمر-دانشکده ی مهندسی شیمی –پردیس دانشکده های فنی–دانشگاه تهران

چکیده

زمینه و هدف: در سال­های اخیر نگرانی از حضور ترکیبات دارویی در پساب در حال افزایش است. انواع مختلفی از باقی­مانده­ ترکیبات آنتی­بیوتیک­های پرکاربرد خانواده­ تتراسایکلین در آب­های محیطی در غلظت­های نسبتاً­ کم و به­طور مداوم یافت می‌شوند که اثرات نامطلوبی بر سلامتی انسان و محیط زیست دارند. مطالعه حاضر با هدف سنتز ایروژل‌های آلی با سطح ویژه‌ بالا جهت حذف آنتی­بیوتیک مینوسایکلین انجام شد.
مواد و روش‌ها: در این پژوهش، ایروژل رزورسینول فرمالدهید با استفاده از روش سل-ژل سنتز و تحت شرایط محیطی خشک گردید. در ادامه‌ ایروژل با استفاده از گرافن اصلاح گردید و در نهایت عملکرد نمونه­های سنتز شده به­عنوان جاذب تحت پارامترهای مختلف از قبیل pH محلول (2-12)، مقدار جاذب (4-10 میلی‌گرم) و زمان تماس جاذب با آنتی­بیوتیک (3-24 ساعت) مورد ارزیابی قرار گرفت. جهت مشخصه‌یابی نمونه‌های ساخته شده از آزمون‌های طیف‌سنجی رامان، میکروسکوپ الکترونی (FE-SEM) و BET استفاده شد و سپس بازده حذف آنتی­بیوتیک مینوسایکلین توسط نمونه­ها با استفاده از آزمون اسپکتروسکپی UV-Vis سنجیده شد.
یافته‌ها: بر اساس نتایج آزمون BET، سطح ویژه مربوط به نمونه‌ ایروژل رزورسینول فرمالدهید با یک درصد وزنی گرافن، نسبت به ایروژل خالص افزایش یافت. همچنین درصد حذف آنتی­بیوتیک مینوسایکلین برای نمونه‌های خالص و اصلاح شده به‌ترتیب برابر با 6/71% و 1/92% در pH­های بهینه 4 و 6 بود.
نتیجه‌گیری: ایروژل رزورسینول فرمالدهید اصلاح شده با گرافن، جاذبی مناسب جهت حذف آنتی­بیوتیک مینوسایکلین از محلول­های آبی می‌باشد

کلیدواژه‌ها

عنوان مقاله [English]

Synthesis of Amine functionalized graphene oxide modified resorcinol formaldehyde aerogel as adsorbent for removal of Minocycline antibiotics from aqueous solution

نویسندگان [English]

  • Alireza Behzadi 1
  • Amirhosein Yazdanbakhsh 2

1 PhD student in polymer Engineering-School of Chemical Engineering -College of Engineering -University of Tehran

2 PhD candidate in polymer Engineering-School of Chemical Engineering -College of Engineering -University of Tehran

چکیده [English]

Background and Purpose: In recent years, concerns about the presence of pharmaceutical compounds in the wastewater have been increasing. Various types of residues of the widely used tetracycline family of antibiotic compounds are found in environmental waters in relatively low and persistent concentrations that have adverse effects on human health and the environment. The aim of this study was to synthesize high specific level organic aerogels to remove Minocycline antibiotics.
Material and Methods: In this study, resorcinol formaldehyde aerogel was synthesized using sol-gel process and dried by ambient drying. The aerogel was then modified using graphene and finally the performance of the synthesized samples as adsorbent under various parameters such as solution pH (2 -12), the amount of adsorbent (4-10 mg) and the time of contact of the adsorbent with the antibiotic (3-24 h) were evaluated. Raman spectroscopy, electron microscopy (FE-SEM) and BET tests were used to characterize the samples and then the removal efficiency of Minocycline antibiotic was measured by the samples using UV-Vis analysis.
Results: The results of BET test showed that the specific surface area of the resorcinol formaldehyde aerogel sample containing 1wt.% graphene was increased compared to the neat aerogel. Also, according to the results, it was found that the removal percentage of minocycline antibiotic for pure and modified samples is 71.6% and 92.1% at optimal pH of 4 and 6, respectively.
Conclusion: Graphene-modified resorcinol formaldehyde aerogel is a suitable adsorbent for removal of Minocycline antibiotic from aqueous solution.

کلیدواژه‌ها [English]

  • Aerogel
  • Antibiotic
  • Minocycline
  • Adsorbent
  • Aqueous solution
  1. M.A. Massoud, A. Tarhini, J.A. Nasr, Decentralized approaches to wastewater treatment and management: Applicability in developing countries, J. Environ. Manage. 2009;(90): 652–659.
  2. MB. Ahmed, JL. Zhou, HH. Ngo, W. Guo. "Adsorptive removal of antibiotics from water and wastewater: progress and challenges." Science of the Total Environment . 2015; 532: 112-126.
  3. MB. Ahmed, JL. Zhou, HH. Ngo, W. Guo, NS. Thomaidis, J. Xu. "Progress in the biological and chemical treatment technologies for emerging contaminant removal from wastewater: a critical review." Journal of hazardous materials . 2017; 323: 274-298.
  4. Derakhshan, Zahra, et al. "Removal methods of antibiotic compounds from aqueous environments–a review." Journal of Environmental Health and Sustainable Development. 2016; 1.1: 43-62.
  5. Jiménez-Tototzintle, Margarita, et al. "Removal of contaminants of emerging concern (CECs) and antibiotic resistant bacteria in urban wastewater using UVA/TiO2/H2O2 photocatalysis." Chemosphere. 2018;210: 449-457.
  6. Yu, Ying, et al. "Investigation of the removal mechanism of antibiotic ceftazidime by green algae and subsequent microbic impact assessment." Scientific reports.2017; 7.1: 1-11.
  7. Liu, Can, et al. "A Review of the Distribution of Antibiotics in Water in Different Regions of China and Current Antibiotic Degradation Pathways." Frontiers in Environmental Science9 (2021).
  8. Zainab, Syeda Maria, et al. "Antibiotics and antibiotic resistant genes (ARGs) in groundwater: A global review on dissemination, sources, interactions, environmental and human health risks." Water research(2020): 116455.
  9. García, Joan, et al. "A review of emerging organic contaminants (EOCs), antibiotic resistant bacteria (ARB), and antibiotic resistance genes (ARGs) in the environment: Increasing removal with wetlands and reducing environmental impacts." Bioresource technology .2020;307: 123228.
  10. Hu, Xiang, et al. "Magnetic ordered mesoporous carbon materials for adsorption of minocycline from aqueous solution: Preparation, characterization and adsorption mechanism." Journal of hazardous materials. 2019;362:1-8.

11.Li, Na, et al. "Simultaneous removal of tetracycline and oxytetracycline antibiotics from wastewater using a ZIF-8 metal organic-framework." Journal of hazardous materials. 2019;366: 563-572.

  1. Long, Lin-Yu, Yun-Xuan Weng, and Yu-Zhong Wang. "Cellulose aerogels: Synthesis, applications, and prospects." Polymers. 2018;10.6: 623.
  2. Gorgolis, George, and Costas Galiotis. "Graphene aerogels: a review." 2D Materials4.3 (2017): 032001.
  3. JE. Amonette, J. Matyáš. "Functionalized silica aerogels for gas-phase purification, sensing, and catalysis: A review." Microporous and Mesoporous Materials. 2017; 250:100-119.
  4. Yun, Shan, Hongjie Luo, and Yanfeng Gao. "Low-density, hydrophobic, highly flexible ambient-pressure-dried monolithic bridged silsesquioxane aerogels." Journal of Materials Chemistry A.2015;3.7: 3390-3398.
  5. J. Xi, Y. Li, E. Zhou, Y. Liu, W. Gao, Y. Guo, J. Ying, Z. Chen, G. Chen, C. Gao. "Graphene aerogel films with expansion enhancement effect of high-performance electromagnetic interference shielding. Carbon 135. 2018; 44-51.
  6. Z. Shariatinia, A. Esmaeilzadeh. "Hybrid silica aerogel nanocomposite adsorbents designed for Cd (II) removal from aqueous solution." Water Environment Research. 2019; 91(12): 1624-1637.
  7. De Marco, Iolanda, et al. "Supercritical gel drying for the production of starch aerogels for delivery systems." Chemical Engineering Transactions. 2015;43: 307-312.
  8. Şahin, İbrahim, et al. "Kinetics of supercritical drying of gels." Gels. 2018; 3.
  9. C. Liang, G. Sha, S. Guo, Resorcinol-formaldehyde aerogels prepared by supercritical acetone drying, J. Non. Cryst. Solids. (2000). https://doi.org/10.1016/S0022-3093(00)00108-3.
  10. Alnaief, Mohammad, Rana M. Obaidat, and Mo’tasem M. Alsmadi. "Preparation of hybrid alginate-chitosan aerogel as potential carriers for pulmonary drug delivery." Polymers.2020; 12.10: 2223.
  11. Y. Gao, Y. Li, L. Zhang, H. Huang, J. Hu, SM. Shah, X. Su. "Adsorption and removal of tetracycline antibiotics from aqueous solution by graphene oxide." Journal of colloid and interface science no. 2012; 368:540-546.
  12. Schwan, Marina, and Lorenz Ratke. "Flexibilisation of resorcinol–formaldehyde aerogels." Journal of Materials Chemistry A.2013; 1.43: 13462-13468.
  13. Zeng Z, Ye S, Wu H, Xiao R, Zeng G, Liang J, Zhang C, Yu J, Fang Y, Song B (2019) Research on the sustainable efcacy of g-MoS2 decorated biochar nanocomposites for removing tetracycline hydrochloride from antibiotic-polluted aqueous solution. Sci Total Environ. 2018; 648:206–217

https:// doi.org/10.1016/j.scitotenv

  1. Sembodo, B.S.T., et al. Effect of sodium carbonate catalyst weight on production of bio-oil via thermochemical liquefaction of corncobs in ethanol-water solution. in AIP Conference Proceedings. 2018. AIP Publishing LLC.
  2. Bordjiba, T., M. Mohamedi, and L.H. Dao, New Class of Carbon-Nanotube Aerogel Electrodes for Electrochemical Power Sources. Advanced Materials.2008; 20(4): 815-819.
  3. Liu, M., et al., Synthesis and adsorption performance of Mg(OH)2 hexagonal nanosheet–graphene oxide composites. Applied Surface Science.2015;332: 121-129.
  4. Dubale, A.A., et al., The synergetic effect of graphene on Cu2O nanowire arrays as a highly efficient hydrogen evolution photocathode in water splitting. Journal of Materials Chemistry. 2014. 2(43): 18383-18397.
  5. Mulik, S. and C. Sotiriou-Leventis, Resorcinol–Formaldehyde Aerogels, in Aerogels Handbook, M.A. Aegerter, N. Leventis, and M.M. Koebel, Editors. Springer New York: New York, NY. 2021; 215-234.
  6. Yeh, Jui-Ming, et al. "Noncovalent interaction between gold nanoparticles and multiwalled carbon nanotubes via an intermediatory." Journal of Nanotechnology.2009 .
  7. C. Gu, KG. Karthikeyan, SD. Sibley, JL. Pedersen. "Complexation of the antibiotic tetracycline with humic acid." Chemosphere .2007; 66(8): 1494-1501.
  8. Saghir, Summaira, and Zhenggang Xiao. "Synthesis of novel Ag@ ZIF-67 rhombic dodecahedron for enhanced adsorptive removal of antibiotic and organic dye." Journal of Molecular Liquids. 2021; 328: 115323.
  9. Behzadi, A.; Hashemi Motlagh, G.; Rezvani Ghomi, E.; Neisiany, R. E.; Jafari, I.; Chinnappan, A.; Khosravi, F.; Ramakrishna, S. Polym. Bull. 2021.
  10.  Chen, H. Li, W. Liu, Z. Meng, Z. Wu, G. Wang, Y. Liang, S. Bi, Colloids and Surfaces A: Physicochemical and Engineering Aspects..2020.124873. DOI 10.1016/j.colsurfa

 

  1.  S. Tunç, Ö. Hanay, B. Yıldız, Chemical Engineering Communications. 2020. DOI 10.1080/00986445.2019.1677628.

 

  1.  Fan, Y. Qu, L. Yao, J. Ren, R. Luque, Z. He, C. Bai, Journal of Colloid and Interface Science 2021. DOI 10.1016/j.jcis.2020.10.107.
  2.  Saghir, Summaira, and Zhenggang Xiao. "Facile preparation of metal-organic frameworks-8 (ZIF-8) and its simultaneous adsorption of tetracycline (TC) and minocycline (MC) from aqueous solutions." Materials Research Bulletin. (2021); 141:111372.
  3. Hu, L. Jia, J. Cheng, Z. Sun, Magnetic ordered mesoporous carbon materials for adsorption of minocycline from aqueous solution: preparation, characterization and adsorption mechanism, J. Hazard. Mater. 2019; 362:1–8, https://doi.org/ 10.1016/j.jhazmat.2018.09.003.