نوع مقاله : مقالات پژوهشی

نویسندگان

1 گروه محیط‌ زیست، دانشکده علوم پایه، واحد همدان، دانشگاه آزاد اسلامی، همدان، ایران

2 گروه علوم و مهندسی محیط‌ زیست، دانشکده علوم پایه، واحد همدان، دانشگاه آزاد اسلامی، همدان، ایران

چکیده

زمینه و هدف: با توجه به این‌که گیاه پالایی فناوری نوین پالایش خاک آلوده است، این پژوهش با هدف بررسی برخی اصلاح کننده ها با نرخ تجزیه‌پذیری زیستی متفاوت در بهبود کارایی گیاه پالایی خاک آلوده به کروم و مس توسط گونه های زینتی تاج خروس و گل جعفری در سال 1397 انجام شد.
مواد و روش‌ها: با آلوده سازی خاک توسط نمک‌های دی کرومات پتاسیم 50 و 100 و سولفات مس 200 و 400 میلی‌گرم در کیلوگرم و تیمار با محلول 2.50 میلی‌مول در کیلوگرم EDTA و اسید سیتریک (CA) و 2.00 میلی‌مول در کیلوگرم اسید سالیسیلیک (SA)، نسبت به کشت گیاهچه ها و برداشت آن‌ها بعد از 60 روز اقدام شد. پس از هضم اسیدی گیاهچه‌ها، محتوی عناصر کروم و مس در آن‌ها به‌روش طیف‌سنج نشری پلاسمای جفت‌شده القایی خوانده شدند.
یافته‌ها: بیشینه غلظت کروم در خاک کشت شده، ریشه و شاخساره تاج خروس با 2.40، 5.18 و 1.86 و در گل جعفری با 2.74، 6.00 و 1.30 میلی‌گرم در کیلوگرم به‌ترتیب مربوط به تیمارهای SA، EDTA و EDTA و در مورد مس در خاک کشت شده، ریشه و شاخساره تاج خروس با 6.74، 3.77 و 3.34 به‌ترتیب مربوط به SA، SA و EDTA و در گل جعفری نیز با 6.65، 3.45 و 9.50 میلی‌گرم در کیلوگرم به‌ترتیب مربوط به تیمارهای SA، EDTA و EDTA بود. از طرفی، تاج خروس با فاکتورهای انتقال و تجمع زیستی بزرگ تر از یک در تیمار 100 میلی‌گرم در کیلوگرم دی کرومات پتاسیم افزوده واجد CA، فرا انباشتگر کروم بود.
نتیجه‌گیری: با توجه به نقش مهم اسیدهای آلی در الکتروکینتیک پالایش خاک و بهبود کارایی گیاه پالایی، استفاده از این عوامل اصلاح کننده برای پاکسازی خاک‌های آلوده به فلزات سنگین توصیه می شود.

کلیدواژه‌ها

عنوان مقاله [English]

A Comparative study on evaluation of efficiency of EDTA, citric acid and salicylic acid chelating agents in phytoremediation enhancing of two ornamental plant species for elimination of Cr(III) and Cu(II) from contaminated soils

نویسندگان [English]

  • Nastaran Aghelan 1
  • Soheil Sobhan Ardakani 2
  • Mehrdad Cheraghi 2
  • Bahareh Lorestani 2

1 Department of the Environment, College of Basic Sciences, Hamedan Branch, Islamic Azad University, Hamedan, Iran

2 Department of the Environment, College of Basic Sciences, Hamedan Branch, Islamic Azad University, Hamedan, Iran

چکیده [English]

Background and Purpose: Phytoremediation is a new technology for
remediation of contaminated soils, this study was conducted to evaluation
of efficiency of EDTA, citric acid and salicylic acid chelating agents in
phytoremediation enhancing of Amaranthus caudatus and Tagetes patula for
elimination of Cr(III) and Cu(II) from contaminated soils in 2018.
Material and Methods: After soil pots contaminating by 50 and 100 (mg/kg)
K2Cr2O7 and 200 and 400 (mg/kg) CuSO4 salts, and 2.5 (mmol/kg) of EDTA
and citric acid (CA) and 2.0 (mmol/kg) of salicylic acid (SA) solution treating,
the cultured seedlings were harvested after 60 days. Then, after seedlings
digestion, Cr and Cu contents were determined using ICP-OES
Results: Based on the results obtained, the maximum contents of Cr (mg/

kg) in cultivated soil, root and stem samples of A. caudatus were 2.40, 5.18

and 1.86 were found in the SA, EDTA and EDTA treatments, respectively and
in T. patula with 2.74, 6.00 and 1.30 were found to be in the SA, EDTA and
EDTA treatments, respectively. Also, the maximum contents of Cu (mg/kg)
in cultivated soil, root and stem samples of A. caudatus with 6.74, 3.77 and
3.34 were found to be in the SA, SA and EDTA treatments, respectively and
in T. patula with 6.65, 3.45 and 9.50 were found to be in the SA, EDTA and
EDTA treatments, respectively. On the other hand, translocation (TF) and
bioconcentration (BCF) factors of A. caudatus both were greater than 1 in
soils with 100 mg/kg added K2Cr2O7 containing CA, which indicates that this
species can be known as hyperaccumulator of Cr
Conclusion: In conclusion, concerning to the considerable role of organic acids
in soil refining electrokinetic and phytoremediation efficiency enhancing,
using of these soil amendment agents is recommended to cleanup of
contaminated soil with heavy metals

کلیدواژه‌ها [English]

  • Electrokinetic
  • Soil amendment
  • Ornamental plants
  • Heavy metal
  • Phytoremediation
  1. Sobhanardakani S. Evaluation of the water quality pollution indices for groundwater resources of Ghahavand plain, Hamadan province, western Iran. Iranian Journal of Toxicology 2016; 10(3):35-40.
  2. Shokri Ragheb P, Sobhanardakani S. Analysis of Co, Cr and Mn concentrations in atmospheric dry deposition in Hamadan City. Journal of Hamadan University of Medical Sciences 2016;23(2):149-56 (In Persian).
  3. Sobhanardakani, S. Ecological and human health risk assessment of heavy metals content of atmospheric dry deposition, a case study: Kermanshah, Iran. Biological Trace Element Research 2019;187(2):602-10.
  4. Amna BUD, Rafique M, Javed MT,et al. Assisted phytoremediation of chromium spiked soils by Sesbania sesban in association with Bacillus xiamenensis PM14: Abiochemical analysis. Plant Physiology and Biochemistry 2020;146:249-58.
  5. Awad M, El-Desoky MA, Ghallab A, et al. Ornamental plant efficiency for heavy metals phytoextraction from contaminated soils amended with organic materials. Molecules 2021;26(11):3360.
  6. Shao Z, Lu W, Naser J, et al. Growth responses and accumulation characteristics of three ornamentals under copper and lead contamination in a hydroponic culture experiment. Bulletin of Environmental Contamination and Toxicology 2019;103:854-59.
  7. 7. Liu JN, Zhou QX, Sun T, et al. Growth responses of three ornamental plants to Cd and Cd-Pb stress and their metal accumulation characteristics. Journal of Hazardous Materials 2008a;151:261-67.
  8. Li Z, Ma Z, Kuijp T, et al. A review of soil heavy metal pollution from mines in China: pollution and health risk assessment. Science of the Total Environment 2014;468-469: 843-53.
  9. Rezaei Raja O, Sobhanardakani S, Cheraghi M. Health risk assessment of citrus contaminated with heavy metals in Hamedan City, potential risk of Al and Cu. Environmental Health Engineering and Management Journal 2016;3(3):131-5.
  10. Sobhanardakani, S. Heavy metals health risk assessment through consumption of some foodstuffs marketed in city of Hamedan, Iran. Caspian Journal of Environmental Sciences 2019b 17(2):175-183.
  11. Fulekar MH. Phytoremediation of heavy metals by Helianthus annus in aquatic and soil environment. International Journal of Current Microbiology and Applied Sciences 2016;5(7):322-404.
  12. Chua J, Banua JM, Arcilla I, et al. Phytoremediation potential and copper uptake kinetics of Philippine bamboo species in copper contaminated substrate. Heliyon 2019;5(9):e02440.
  13. Mahar A, Wang P, Ali A, et al. Challenges and opportunities in the phytoremediation of heavy metals contaminated soils: a review. Ecotoxicology and Environmental Safety 2016;126:111-21.
  14. Yan L, Li C, Zhang J, et al. Enhanced phytoextraction of lead from artificially contaminated soil by Mirabilis jalapa with chelating agents. Bulletin of Environmental Contamination and Toxicology 2017;99:208-12.
  15. Shehata SM, Badawy RK, Aboulsoud YIE. Phytoremediation of some heavy metals in contaminated soil. Bulletin of the National Research Centre 2019:43:189.
  16. Ranieri, Moustakas K, Barbafieri M, et al. Phytoextraction technologies for mercury- and chromium-contaminated soil: A review. Journal of Chemical Technology and Biotechnology 2020a;95:317-27.
  17. Aghelan N, Sobhanardakani S, Cheraghi M, et al. Evaluation of chelating agents with different biodegradability rates on the enhanced phytoremediation efficiency of ornamental species (Amaranthus Caudatus and Tagetes Patula) in cadmium contaminated soils. Journal of Environmental Health Engineering 2020;7(4):427-42.
  18. Ranieri E, Tursi A, Giuliano S, et al. Phytoextraction from chromium-contaminated soil using Moso Bamboo in Mediterranean conditions. Water, Air, & Soil Pollution 2020b;231(8):408.
  19. Ali H, Khan E, Sajad MA. Phytoremediation of heavy metals- concepts and applications. Chemosphere 2013;91(7):869-81.
  20. Zhao X, Zheng W, Dong D, et al. Temperature effect on fluorescence of PtOEP embedded in sol-gel membrane used in oxygen sensor. Optik- International Journal for Light and Electron Optics 2013;124:6799-6802.
  21. Sandana Mala JG, Sujatha D, Rose C. Inducible chromate reductase exhibiting extracellular activity in Bacillus methylotrophicus for chromium bioremediation. Microbiology Research 2017;170: 235-41.
  22. Sobhanardakani S. Potential health risk assessment of heavy metals via consumption of caviar of Persian sturgeon. Marine Pollution Bulletin 2017;123(1-2):34-8.
  23. Sabet Aghlidi P, Cheraghi M, Lorestani B, et al. Analysis, spatial distribution and ecological risk assessment of arsenic and some heavy metals of agricultural soils, case study: South of Iran. Journal of Environmental Health Science and Engineering 2020;18(2):665-76.
  24. Shahid M, Shamshad S, Rafiq M, et al. Chromium speciation, bioavailability, uptake, toxicity and detoxification in soil-plant system: A review. Chemosphere 2017;178:513-33.
  25. Vidayanthi V, Choesin D, Iriawati I. Phytoremediation of chromium: distribution and speciation of chromium in Typha angustifolia. International Journal of Plant Biology 2017;8(1):6870.
  26. Stanislawska-Glubiak E, Korzeniowska J. Fate of copper in soils from different fertilizer doses in relation to environmental risk assessment. Polish Journal of Environmental Studies 2018;27(4):1735-41.
  27. Fu R, Wen D, Xia X, et al. Electrokinetic remediation of chromium (Cr)-contaminated soil with citric acid (CA) and polyaspartic acid (PASP) as electrolytes. Chemical Engineering Journal 2017;316(15):601-08.
  28. Xu T, Nan F, Jiang X, et al. Effect of soil pH on the transport, fractionation, and oxidation of chromium (III). Ecotoxicology and Environmental Safety 2020;195:110459.
  29. Hsu NH, Wang SL, Lin YC, et al. Reduction of Cr (VI) by crop-residue-derived black carbon. Environmental Science & Technology 2009;43:8801-06.
  30. Choppala G, Bolan N, Shnan AK, et al. Concomitant reduction and immobilization of chromium in relation to its bioavailability in soils. Environmental Science and Pollution Research 2015;22: 8969-78.
  31. Ebrahimi M. Effect of EDTA treatment method on leaching of Pb and Cr by Phragmites australis (Cav.) Trin. Ex Steudel (common reed). Caspian Journal of Environmental Sciences 2015;13(2):153-66.
  32. Qu J, Lou C, Yuan X, et al. The effect of sodium hydrogen phosphate/citric acid mixtures on phytoremediation by alfalfa & metals availability in soil. Soil Science and Plant Nutrition 2011;11(2): 85-95.
  33. Pranav K, Chaturvedi CS, Seth VM. Selectivity sequences and sorption capacities of phosphatic clay and humus rich soil towards the heavy metals present in zinc mine tailing. Journal of Hazardous Materials 2007;147:698-705.
  34. Mohammadi Roozbahani M, Sobhanardakani S, Karimi H, et al. Natural and anthropogenic source of heavy metals pollution in the soil samples of an industrial complex; a case study. Iranian Journal of Toxicology 2015;9(29):1336-41.
  35. Cuske M, Karczewska A, Galka B. Some adverse effects of soil amendment with organic materials- The case of soils polluted by Cu industry phytostabilized with red fescue. International Journal of Phytoremediation 2016;18(8):839.
  36. Pietrzak U, Mcphail DC. Copper accumulation, distribution and fractionation in vineyard soils of Victoria, Australia. Geoderma 2004;122(2-4):151-66.
  37. Ko CH, Chang FC, Wang YN, et al. Extraction of heavy metals from contaminated soil by two Amaranthus spp. CLEAN- Soil, Air, Water 2014;42(5):635-40.
  38. Afrousheh M, Tehranifar A, Shoor M, et al. Phytoremediation potential of copper contaminated soils in Calendula officinalis and effect of salicylic acid on the growth and copper toxicity. International Letters of Chemistry. Physics and Astronomy 2015a;50:159-68.
  39. Cay S, Uyanik A, Engin MS, et al. Effect of EDTA and tannic acid on the removal of Cd, Ni, Pb and Cu from artificially contaminated soil by Althea rosea Cavan. International Journal of Phytoremediation 2015;17(1-6):568-74.
  40. Amouei A, Naddafi K, Mahvi A. The effect of chemical additives on the uptake and accumulation of Pb and Cd in native plants of north of Iran. Journal of Mazandaran University of Medical Sciences 2012;21(86):116-24 (In Persian).
  41. 42. Chaturvedi N, Ahmed MJ, Dhal NK. Effects of iron ore tailings on growth and physiological activities of Tagetes patula Journal of Soils and Sediments 2014;14:721-30.
  42. Song Y, Ammami MT, Benamar A, et al. Effect of EDTA, EDDS, NTA and citric acid on electrokinetic remediation of As, Cd, Cr, Cu, Ni, Pb and Zn contaminated dredged marine sediment. Environmental Science and Pollution Research 2016;23(11):10577-86.
  43. Afrousheh M, Tehranifar A, Shoor M, et al. Salicylic acid alleviates copper toxicity in Tagetes erecta. International Journal of Farming and Allied Sciences 2015b;4(3):232-8.
  44. Ghosh A, Manchanda N. Phytoremediation of heavy metals from water of Yamuna river by Tagetes patula, Bassica scoparia, Portulaca grandiflora. Asian Plant Research Journa. 2019;2(2):1-14.
  45. Suthar V, Memon KS, Mahmood-ul- Hassan M. EDTA- enhanced phytoremediation of contaminated calcareous soils: heavy metal bioavailability, extractability, and uptake by maize and sesbania. Environmental Monitoring and Assessment 2014;186(6):3957-68.
  46. Lingua G, Todeschini V, Grimaldi M, et al. Polyaspartate, a biodegradable chelant that improves the phytoremediation potential of poplar in a highly metal-contaminated agricultural soil. Journal of Environmental Management 2014;132:9-15.
  47. Sabir M, Hanafi MM, Zia- Ur- Rehman M, et al. Comparison of low- molecular- weight organic acids and ethylenediaminetetraacetic acid to enhance phytoextraction of heavy metals by maize. Communications in Soil Science and Plant Analysis 2014;45(1):42-52.
  48. Hart G, Koether M, McElroy T, et al. Evaluation of chelating agents used in phytoextraction by

switchgrass of lead contaminated soil. Plants 2022;11:1012.

  1. Zhang T, Zou H, Ji H, et al. Enhanced electrokinetic remediation of lead-contaminated soil by complexing agents and approaching anodes. Environmental Science and Pollution Research 2014;21: 3126-33.
  2. Grecman H, Velikonja-Bolta S, Vodnik D, et al. EDTA enhanced heavy metal phytoextraction: metal accumulation, leaching and toxicity. Plant and Soil 2001;235(1):105-14.
  3. Vassil AD, Kapulnik Y, Raskin I, et al. The role of EDTA in lead transport and accumulation by Indian mustard. Plant Physiology 1998;117(2):447-53.
  4. Ehsan S, Ali S, Noureen S, et al. Citric acid assisted phytoremediation of cadmium by Brassica napus L. Ecotoxicoly and Environmental Safety 2014;106:164-72.
  5. Han Y, Zhang L, Gu J, et al. Citric acid and EDTA on the growth, photosynthetic properties and heavy metal accumulation of Iris halophile Pall. Cultivated in Pb mine tailings. International Biodeterioration and Biodegradation 2018;128:15-21.
  6. Sinhal VK, Srivastava A, Singh VP. EDTA and citric acid mediated phytoextraction of Zn, Cu, Pb and Cd through marigold (Tagetes erecta). Journal of Environmental Biology 2010;31(3):255-9.
  7. Mohammad Zaheri F, Sobhanardakani S, Lorestani B. Investigation of efficiency of natural zeolite on immobilization/stabilization of Pb and Cd in contaminated soil using the BCR sequential extraction method. Journal of Environmental Health Enginering 2020;8(1):31-49 (In Persian).
  8. Davodpour R, Sobhanardakani S, Cheraghi M, et al. Honeybees (Apis mellifera L.) as a potential bioindicator for detection of toxic and essential elements in the environment (Case study: Markazi Province, Iran). Archives of Environmental Contamination and Toxicology 2019;77(3):344-58.
  9. Mohammadi SM, Lorestani B, Sobhan Ardakani S, et al. Source identification and ecological risk assessment of some heavy metals in surface soils collected from the vicinity of Arad-Kouh processing and disposal complex, Tehran, Iran. Environmental Sciences 2021;19 (3):1-22(In Persian).
  10. Hazratzadeh Sh, Sobhanardakani S. Assessment of Zn, Pb, Cd, and Cu contamination in surface soils of urban parks in city of Hamedan. Iranian Journal of Soil Research 2018;32(3):399-413 (In Persian).
  11. Sobhanardakani S. Assessment of Pb and Ni contamination in the topsoil of ring roads’ green spaces in the city of Hamedan. Pollution 2018;4(1):43-51.
  12. Hosseini NS, Sobhanardakani S. Evaluation of the impact of traffic volume on pollution and potential ecological risk of Zn, Pb, and Ni in suburban roadside soils in Hamedan, Iran. Iranian Journal of Soil Research 2021;35(2):119-135 (In Persian).
  13. 62. Liu JN, Zhou QX, Sun T, et al. Identification and chemical enhancement of two ornamental plants for phytoremediation. Bulletin of Environmental Contamination and Toxicology 2008b;80:260-5.
  14. Sobhanardakani S, Heydari A, Khorasani NA, et al. Preparation of new biofungicides using antagonistic bacteria and mineral compounds for controlling cotton seedling damping-off disease. Journal of Plant Protection Research 2009;49(1):49-55.
  15. Bareen F, Rafiq K, Shafiq M, et al. Uptake and leaching of Cu, Cd, and Cr after EDTA application in sand columns using Sorghum and Pearl Millet. Polish Journal of Environmental Studies 2019;28(4): 2065-77.
  16. Hosseini NS, Sobhanardakani S, Cheraghi M, et al. Heavy metal concentrations in roadside plants (Achillea wilhelmsii and Cardaria draba) and soils along some highways in Hamedan, west of Iran. Environmental Science and Pollution Research 2020;27(12):13301-14.
  17. Abbaszadeh H, Mohammadi Roozbahani M, Sobhanardakani S. Use of Ziziphus spina-christi and Prosopis cineraria leaves as bio-indicators of environmental pollution emitted from industrial areas. Iranian Journal of Health and Environment 2019;12(1):87-100 (In Persian).
  18. Lam EJ, Canovas M, Galvez ME, et al. Evaluation of the phytoremediation potential of native plants growing on a copper mine tailing in northern Chile. Journal of Geochemical Exploration 2017; 182:210-17.
  19. Napoli M, Cecchi S, Grassi C, et al. Phytoextraction of copper from a contaminated soil using arable and vegetable crops. Chemosphere 2019;219:122-9.
  20. Choudhury MR, Islam MS, Ahmed ZU, et al. Phytoremediation of heavy metal contaminated Buriganga riverbed sediment by indian mustard and marigold plants. Environmental Progress & Sustainable Energy 2015;35:117-24.
  21. Chitraprabha K, Sathyavathi S. Phytoextraction of chromium from electroplating effluent by Tagetes erecta (L.). Sustainable Environment Research 2018;28:128-34.
  22. Suman J, Uhlik O, Viktorova J, et al. Phytoextraction of heavy metals: a promising tool for clean-up of polluted environment? Frontiers in Plant Science 2018;9:1476.
  23. Mir RA, Ahanger MA, Agarwal RM. Marigold: from mandap to medicine and from ornamentation to remediation. American Journal of Plant Sciences 2019;10:309-38.
  24. Ziarati P, Alaedini S. The phytoremediation technique for cleaning up contaminated soil by Amaranthus sp. Journal of Environmental and Analytical Toxicology 2014;4(2):208-11.
  25. Karczewska A, Orlow K, Kabala C, et al. Effects of chelating compounds on mobilization and phytoextraction of copper and lead in contaminated soil.Communications in Soil Science and Plant Analysis 2011;42:1379.
  26. Rutkowska B, Szulc W. Speciation of Cu and Zn in soil solution in a long-term fertilization experiment. Soil Science Annual 2014;65(1):25.
  27. Neugschwandtner RW, Tlustos P, Komarek M, et al. Chemically enhanced phytoextraction of risk elements from a contaminated agricultural soil using Zea mays and Triticum aestivum: performance and metalmobilization over a three year period. International Journal of Phytoremediation 2012;14(8): 754-71.
  28. Barrow NJ, Debnath A, Sen A. Mechanisms by which citric acid increases phosphate availability. Plant and Soil 2017;423(1-2):1-12.
  29. Khan AR, Ullah I, Waqas M, et al. Host plant growth promotion and cadmium detoxification in Solanum nigrum, mediated by endophytic fungi. Ecotoxicology and Environmental Safety 2017;136: 180-8.

81. Goodarzi AR, Mirmomen M. The effect of time and pore fluid characteristics on electrokinetic performance in removing heavy metals from soil. Modares Civil Engineering Journal 2016;16(2):229-41 (In Persian).

  1. Cay S. Enhancement of cadmium uptake by Amaranthus caudatus, an ornamental plant, using tea saponin. Environmental Monitoring and Assessment 2016;188:320-7.