تعهد نامه

نوع مقاله : مقالات پژوهشی

نویسندگان

1 دانشجوی دکتری تخصصی محیط‌زیست، گروه محیط‌زیست، دانشکده علوم پایه، واحد همدان، دانشگاه آزاد اسلامی، همدان، ایران.

2 استاد، گروه محیط‌زیست، دانشکده علوم پایه، واحد همدان، دانشگاه آزاد اسلامی، همدان، ایران.

3 دانشیار، گروه محیط‌زیست، دانشکده علوم پایه، واحد همدان، دانشگاه آزاد اسلامی، همدان، ایران.

چکیده

زمینه و هدف: هیدروکربن‌های آروماتیک چندحلقه‌ای (PAHs)، گروهی از آلاینده‌های محیط‌ زیستی با قابلیت ناهنجاری‌زایی، جهش‌زایی و سرطان‌زایی هستند که از احتراق ناقص و پیرولیز سوخت‌های فسیلی و یا احتراق مواد آلی تولید می‌شوند. این مطالعه با هدف شناسایی، تعیین محتوی و منشأ‌یابی PAHs در خاک سطحی مناطق صنعتی شهرستان همدان در سال 1399 انجام شد.
مواد و روش ها: در این پژوهش توصیفی، 36 نمونه خاک سطحی از 12 ایستگاه مستقر در مناطق صنعتی جمع‌آوری شد. پس از استخراج آنالیت ها به روش سوکسله، از روش کروماتوگرافی گازی- طیف سنجی جرمی (GC-MS) برای شناسایی و تعیین محتوای ترکیبات PAHs در نمونه ها استفاده شد. برای تعیین منشاء PAHs از روش نسبت‌های تشخیصی مولکولی (MDRs) استفاده شد. همچنین، مقادیر پارامترهای pH، هدایت الکتریکی (EC) و کربن آلی کل (TOC) نمونه‌های خاک نیز اندازه‌گیری شد. پردازش آماری داده‌ها نیز با استفاده از نسخه 20 نرم‌افزار SPSS انجام شد.
یافته ها: بر اساس نتایج، مجموع غلظت 16 ایزومر شناسایی‌شده از 2417 تا 16279 میکروگرم در کیلوگرم متغیر و میانگین مقادیر آن‌ها 7685 میکروگرم در کیلوگرم بود. به‌علاوه، مشخص شد که هیدروکربن‌های 4-6 حلقه‌ای %66 از کل مقادیر PAHs را به‌خود اختصاص داده‌اند. از طرفی، فلورانتن (Fla)، پایرن (Pyr) و بنزو (بتا) فلورانتن (B(b)F) فراوان‌ترین ترکیبات شناسایی‌شده در خاک بودند و میانگین محتوی ترکیبات بنزو (آلفا) آنتراسن (B(a)A)، بنزو (بتا) فلورانتن (B(b)F)، بنزو (آلفا) پایرن (B(a)P) و دی بنزو (آ اچ) آنتراسن (DB(ah)A) از بیشینه رواداری کیفیت خاک هلند بیش‌تر بود. نتایج روش MDRs نشان داد که هر دو منابع پیروژنیک و پتروژنیک منشاء PAHها در منطقه مورد مطالعه هستند.
نتیجه گیری: نتایج این مطالعه حاکی از تأثیر بالای فعالیت‌های انسانی بر آلودگی خاک منطقه مورد مطالعه به PAHs است و از این‌رو، نسبت به اعمال راهکارهای مدیریتی از جمله پالایش و پاکسازی خاک‌های آلوده برای حفظ سلامت محیط و انسان توصیه می‌شود.

کلیدواژه‌ها

عنوان مقاله [English]

Concentrations and source identification of polycyclic aromatic hydrocarbons (PAHs) in surface soil of industrial areas in city of Hamedan, Iran

نویسندگان [English]

  • Azim Rabiei Mesbah 1
  • Soheil Sobhan Ardakani 2
  • Mehrdad Cheraghi 3
  • Bahareh Lorestani 3

1 PhD, Candidate, Dept. of the Environment, College of Basic Sciences, Hamedan Branch, Islamic Azad University, Hamedan, Iran.

2 Professor, Dept. of the Environment, College of Basic Sciences, Hamedan Branch, Islamic Azad University, Hamedan, Iran.

3 Associate Professor, Dept. of the Environment, College of Basic Sciences, Hamedan Branch, Islamic Azad University, Hamedan, Iran.

چکیده [English]

Background and Aim: Polycyclic aromatic hydrocarbons are a large group of ubiquitous environmental pollutants with teratogenic, mutagenic and carcinogenic potential, which are products of incomplete combustion and pyrolysis of fossil fuels and combustion of organic matter. This study was performed to determine and identify the origin, concentration and source of PAHs compounds in surface soils of industrial areas, Hamedan, Iran, in 2021.
Material and Methods: In this descriptive study, 36 surface soil specimens were collected from 12 sampling sites of industrial areas. After extraction of analytes based on the soxhlet method, the gas chromatography/mass spectrometry (GC–MS) method was used for the determination of PAHs compounds in the samples. Molecular diagnostic ratios (MDRs) were used to determine the origin of PAH compounds. Furthermore, the amounts of pH, electrical conductivity (EC) and total organic carbon (TOC) parameters of soil samples were measured. Statistical data processing was performed using SPSS statistics 20 software.
Results: The results showed that the total concentrations of 16 identified isomers ranged from 2417 to 16279 µg/kg with a median of 7675 µg/kg and with a dominance of 4-6 rings hydrocarbons (66% of total PAHs). Furthermore fluoranthene (Fla), pyrene (Pyr) and benzo(b)fluoranthene (BbF) were the most abundant compounds in soil and the average of compounds such as benzo(a)anthracene (BaA), benzo(b)fluoranthene (BbF), benzo(a)pyrene (BaP) and dibenzo(a,h)anthracene (DB(ah)A) were higher than MPC established by The Dutch Ministry of Health, Welfare and Sport (MHWS). The results of the MDRs method indicated that both pyrogenic and petrogenic sources are the origin of PAHs in the study area.
Conclusion: The result of this study indicates the high impact of anthropogenic activities on the contamination of the study area with PAH compounds. Thus, appropriate soil remediation (especially bioremediation) approaches should be considered.

کلیدواژه‌ها [English]

  • Soil pollutants
  • Environmental pollution
  • Carcinogens
  • Polycyclic aromatic hydrocarbons
  • Hazardous substances
  1. Chen M, Huang P, Chen L. Polycyclic aromatic hydrocarbons in soils from Urumqi, China: distribution, source contributions, and potential health risks. Environmental monitoring and assessment 2013;185(7):5639-51.
  2. Arey J, Atkinson R. Photochemical reactions of PAHs in the atmosphere. PAHs: An ecotoxicological perspective 2003:47-63.
  3. Akyüz M, Çabuk H. Gas–particle partitioning and seasonal variation of polycyclic aromatic hydrocarbons in the atmosphere of Zonguldak, Turkey. Science of the total environment 2010;408(22):5550-8.
  4. Masih J, Singhvi R, Kumar K, et al. Seasonal variation and sources of polycyclic aromatic hydrocarbons (PAHs) in indoor and outdoor air in a semi arid tract of northern India. Aerosol and Air Quality Research 2012;12(4):515-25.
  5. Feng T, Lin H, Guo Q, et al. Influence of an arsenatereducing and polycyclic aromatic hydrocarbons-degrading Pseudomonas isolate on growth and arsenic accumulation in Pteris vittata L. and removal of phenanthrene. International biodeterioration & biodegradation 2014;94:12-8.
  6. Kamal A, Malik RN, Martellini T, et al. Cancer risk evaluation of brick kiln workers exposed to dust bound PAHs in Punjab province (Pakistan). Science of the total environment 2014; 493:562-70.
  7. Zhang G, Pan Z, Wang X, et al. Distribution and accumulation of polycyclic aromatic hydrocarbons (PAHs) in the food web of Nansi Lake, China. Environmental monitoring and assessment 2015;187(4):112.
  8. Gao P, da Silva E, Hou L, et al. Human exposure to polycyclic aromatic hydrocarbons: Metabolomics perspective. Environment international 2018;119:466-77.
  9. Yang Y, Woodward LA, Li QX, et al. Concentrations, source and risk assessment of polycyclic aromatic hydrocarbons in soils from Midway Atoll, North Pacific Ocean. PLoS One 2014;9(1):e86441.
  10. Keith LH. The source of US EPA's sixteen PAH priority pollutants. Polycyclic Aromatic Compounds 2015;35(2-4):147-60.
  11. Keshavarzifard M, Zakaria MP, Hwai TS, et al. Baseline distributions and sources of polycyclic aromatic hydrocarbons (PAHs) in the surface sediments from the Prai and Malacca Rivers, Peninsular Malaysia. Marine pollution bulletin 2014;88(1-2):366-72.
  12. Tobiszewski M, Namieśnik J. PAH diagnostic ratios for the identification of pollution emission sources. Environmental pollution 2012;162:110-9.
  13. Lang Y, Wang N, Gao H, et al. Distribution and risk assessment of polycyclic aromatic hydrocarbons (PAHs) from Liaohe estuarine wetland soils. Environmental monitoring and assessment 2012;184(9):5545-52.
  14. Sun J, Pan L, Tsang DC, et al. Polychlorinated biphenyls in agricultural soils from the Yangtze River Delta of China: regional contamination characteristics, combined ecological effects and human health risks. Chemosphere 2016;163:422-8.
  15. Neff JM, Stout SA, Gunster DG. Ecological risk assessment of polycyclic aromatic hydrocarbons in sediments: identifying sources and ecological hazard. Integrated Environmental Assessment and Management: An International Journal. 2005;1(1):22-33.
  16. Keyte IJ, Harrison RM, Lammel G. Chemical reactivity and long-range transport potential of polycyclic aromatic hydrocarbons–a review. Chemical Society Reviews 2013;42(24):9333-91.
  17. Wilcke W, Bandowe BAM, Lueso MG, et al. Polycyclic aromatic hydrocarbons (PAHs) and their polar derivatives (oxygenated PAHs, azaarenes) in soils along a climosequence in Argentina. Science of the total environment 2014;473:317-25.
  18. Liu G, Bi R, Wang S, et al. The use of spatial autocorrelation analysis to identify PAHs pollution hotspots at an industrially contaminated site. Environmental monitoring and assessment 2013;185(11):9549-58.
  19. Halfadji A, Touabet A, Portet-Koltalo F, et al. Concentrations and source identification of polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) in agricultural, urban/residential, and industrial soils, east of Oran (Northwest Algeria). Polycyclic Aromatic Compounds 2019;39(4):299-310.
  20. Yurdakul S, Çelik I, Çelen M, et al. Levels, temporal/spatial variations and sources of PAHs and PCBs in soil of a highly industrialized area. Atmospheric Pollution Research. 2019;10(4):1227-38.
  21. Qi P, Qu C, Albanese S, et al. Investigation of polycyclic aromatic hydrocarbons in soils from Caserta provincial territory, southern Italy: Spatial distribution, source apportionment, and risk assessment. Journal of hazardous materials 2020;383:121158.
  22. Bandowe BAM, Shukurov N, Leimer S, et al. Polycyclic aromatic hydrocarbons (PAHs) in soils of an industrial area in semi-arid Uzbekistan: spatial distribution, relationship with trace metals and risk assessment. Environmental Geochemistry and Health 2021:1-15.
  23. Taghvaei M, Salehi M. Assess the degree of development in Hamedan province with an emphasis on regional analysis approach. Journal of Regional Planning Third Year 2013;11(3):19-30.
  24. Melnyk A, Dettlaff A, Kuklińska K, et al. Concentration and sources of polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) in surface soil near a municipal solid waste (MSW) landfill. Science of the Total Environment 2015;530:18-27.
  25. Mohammadi SM, Lorestani B, Sobhanardakani S, et al. Concentrations and potential ecological risk assessment of polycyclic aromatic hydrocarbons (PAHs) in surface soils from vicinity of Arad-Kouh processing and disposal complex, Tehran, Iran. Iranian Journal of Soil Research. 2021;34(4):515-29.
  26. Heiri O, Lotter AF, Lemcke G. Loss on ignition as a method for estimating organic and carbonate content in sediments: reproducibility and comparability of results. Journal of paleolimnology 2001;25(1):101-10.
  27. Khoshand A, Tabiatnejad B, Siddiqua S, et al. Assessment of Polycyclic Aromatic Hydrocarbons (PAHs) Contamination in Surface Soil along Tehran-Semnan Road, Iran. AUT Journal of Civil Engineering. 2017;1(1):77-86.
  28. Davodpour R, Sobhanardakani S, Cheraghi M, et al. Honeybees (Apis mellifera L.) as a potential bioindicator for detection of toxic and essential elements in the environment (case study: Markazi Province, Iran). Archives of environmental contamination and toxicology. 2019;77(3):344-58.
  29. Zakaria MP, Takada H, Tsutsumi S, et al. Distribution of polycyclic aromatic hydrocarbons (PAHs) in rivers and estuaries in Malaysia: a widespread input of petrogenic PAHs. Environmental science & technology 2002;36(9):1907-18.
  30. Bakhtiari AR, Zakaria MP, Yaziz MI, et al. Vertical distribution and source identification of polycyclic aromatic hydrocarbons in anoxic sediment cores of Chini Lake, Malaysia: Perylene as indicator of land plant-derived hydrocarbons. Applied Geochemistry 2009;24(9):1777- 87.
  31. Yunker MB, Macdonald RW, Vingarzan R, et al. PAHs in the Fraser River basin: a critical appraisal of PAH ratios as indicators of PAH source and composition. Organic geochemistry 2002;33(4):489-515.
  32. Soclo H, Garrigues P, Ewald M. Origin of polycyclic aromatic hydrocarbons (PAHs) in coastal marine sediments: case studies in Cotonou (Benin) and Aquitaine (France) areas. Marine pollution bulletin 2000;40(5):387-96.
  33. Yang Z, Wang L, Niu J, et al. Pollution assessment and source identifications of polycyclic aromatic hydrocarbons in sediments of the Yellow River Delta, a newly born wetland in China. Environmental monitoring and assessment 2009;158(1):561-71.
  34. Mohammadi SM, Lorestani B, Sobhan Ardakani S, et al. Source identification and health risk assessment of PAHs in surface soils from the vicinity of Arad-Kouh processing and disposal complex, Tehran, Iran. International Journal of Environmental Analytical Chemistry 2021:1-14.
  35. Ministry of Health, Welfare and Sport, National Institute for Public Health and the Environment. Environmental risk limits for polycyclic aromatic hydrocarbons (PAHs) for direct aquatic, benthic, and terrestrial toxicity. 2012:339.
  36. Iran DoEIRo. Soil resource quality standards and guidelines. Deputy of Human Environment. Water and Soil Office 2014(2):161.
  37. Froger C, Saby N, Jolivet CC, et al. Spatial variations, origins, and risk assessments of polycyclic aromatic hydrocarbons in French soils. Soil 2021;7(1):161-78.
  38. Maliszewska-Kordybach B, Smreczak B, Klimkowicz-Pawlas A, et al. Monitoring of the total content of polycyclic aromatic hydrocarbons (PAHs) in arable soils in Poland. Chemosphere 2008;73(8):1284-91.
  39. Zhao Z, Zeng H, Wu J, et al. Concentrations, sources and potential ecological risks of polycyclic aromatic hydrocarbons in soils from Tajikistan. International Journal of Environment and Pollution 2017;61(1):13-28.
  40. Vane CH, Kim AW, Beriro DJ, et al. Polycyclic aromatic hydrocarbons (PAH) and polychlorinated biphenyls (PCB) in urban soils of Greater London, UK. Applied Geochemistry. 2014; 51:303-14.
  41. Wild SR, Jones KC. Polynuclear aromatic hydrocarbons in the United Kingdom environment: a preliminary source inventory and budget. Environmental pollution. 1995;88(1):91-108.
  42. Liu G, Niu J, Guo W, et al. Ecological and health risk-based characterization of agricultural soils contaminated with polycyclic aromatic hydrocarbons in the vicinity of a chemical plant in China. Chemosphere. 2016; 163:461-70.
  43. Wu J, Li K, Ma D, et al. Contamination, source identification, and risk assessment of polycyclic aromatic hydrocarbons in agricultural soils around a typical coking plant in Shandong, China. Human and Ecological Risk Assessment: An International Journal 2018;24(1):225-41.
  44. Baumard P, Budzinski H, Michon Q, et al. Origin and bioavailability of PAHs in the Mediterranean Sea from mussel and sediment records. Estuarine, Coastal and Shelf Science. 1998;47(1):77-90.
  45. Wenzel K-D, Manz M, Hubert A, et al. Fate of POPs (DDX, HCHs, PCBs) in upper soil layers of pine forests. Science of the total environment 2002;286(1-3):143-54.
  46. Aichner B, Bussian B, Lehnik-Habrink P, et al. Levels and spatial distribution of persistent organic pollutants in the environment: a case study of German forest soils. Environmental science & technology. 2013;47(22):12703-14.
  47. Cai J, Gao S, Zhu L, et al. Occurrence and source apportionment of polycyclic aromatic hydrocarbons in soils and sediment from Hanfeng Lake, Three Gorges, China. Journal of Environmental Science and Health, Part A 2017;52(13):1226-32.
  48. Heywood E, Wright J, Wienburg CL, et al. Factors influencing the national distribution of polycyclic

aromatic hydrocarbons and polychlorinated biphenyls in British soils. Environmental Science & Technology. 2006;40(24):7629-35.

  1. Xu J, Yu Y, Wang P, et al. Polycyclic aromatic hydrocarbons in the surface sediments from Yellow River, China. Chemosphere. 2007;67(7):1408-14.
  2. Nieuwoudt C, Pieters R, Quinn LP, et al. Polycyclic aromatic hydrocarbons (PAHs) in soil and sediment from industrial, residential, and agricultural areas in central South Africa: An initial assessment. Soil and sediment contamination. 2011;20(2):188-204.
  3. Tongo I, Ogbeide O, Ezemonye L. Human health risk assessment of polycyclic aromatic hydrocarbons (PAHs) in smoked fish species from markets in Southern Nigeria. Toxicology reports. 2017; 4:55-61.
  4. Gereslassie T, Workineh A, Liu X, et al. Occurrence and ecological and human health risk assessment of polycyclic aromatic hydrocarbons in soils from Wuhan, central China. International journal of environmental research and public health. 2018;15(12):2751.