تعهد نامه

نوع مقاله : مقالات پژوهشى اصیل کمی و کیفی

نویسندگان

1 دانشجوی کارشناسی ارشد مهندسی شیمی- طراحی فرایند، گروه مهندسی شیمی، دانشکده مهندسی شیمی و نفت، دانشگاه تبریز، تبریز، ایران.

2 استادیار، گروه مهندسی شیمی، دانشکده مهندسی شیمی و نفت، دانشگاه تبریز، تبریز، ایران.

3 دانشیار، گروه بهداشت حرفه‌ای، دانشکده بهداشت، دانشگاه علوم پزشکی تبریز، تبریز، ایران.

چکیده

زمینه و هدف: آلودگی‌های منتشره در صنایع چاپ، مطابق تحقیقات سازمان بهداشت جهانی به عنوان یکی از جدی‌ترین خطرات برای سلامتی کارکنان به شمار می‌رود. اثرات بهداشتی این آلاینده ها از بیماری‌های حاد مانند سوزش ‌چشم تا اثرات مزمن مانند ابتلا به سرطان و حتی آسیب به DNA است.

مواد و روش‌ها: جهت مطالعه آلودگی هوا در محیط‌های داخلی صنعت چاپ، با استفاده از دستورالعمل EPA و روش رتبه بندی مکانی، نمونه‌ها جمع‌آوری و سپس توسط دستگاه کروماتوگرافی گازی آنالیز شد.

یافته‌ها: بر اساس نتایج کرماتوگرافی گازی، مجموع غلظت ترکیبات آلی بسیار فرار و ترکیبات آلی فرار در نزدیک‌ترین نقطه به مخزن رنگ‌، محل قرارگیری اپراتور در فاصله یک متری و دو متری از دستگاه هلیوگراور، و فضای عمومی کارخانه به ترتیب برابر %83/20، %41/5، %85/1 %46/1 به دست آمد. 52% از آلاینده‌های مشاهده شده جزو حلال‌های آلی مرکب، 38% از ترکیبات گوگرددار و 52% جزو ترکیبات نیتروژن‌دار بودند. حدود 24% از آلاینده‌ها ساختار پیچیده‌ای متشکل از 12 کربن و بالاتر دارند. غلظت آلاینده‌های مشاهده شده نه تنها از استانداردهای OSHA و NIOSH بسیار فراتر است؛ بلکه در مقایسه با پژوهش مشابه بین المللی نیز، بسیار بالا می‌باشد؛ بطوری که در محدوده اعلان کد خطر بوده و اثرات بهداشتی نگرانکننده‌ای بر کارکنان دارند.

نتیجه گیری: نتایج نشان‌دهنده نیاز به مداخله فوری برای کاهش آلایندگی محیط‌های صنعت چاپ می‌باشد. روش ارجح برای مدیریت کیفیت هوای داخلی، کنترل و جایگزینی منبع آلودگی، تهویه عمومی و موضعی مناسب با استفاده از تجهیزات تهویه مطبوع و یا استفاده همزمان از فیلترها و سیستم تهویه مطبوع جهت کاهش انتشار پیشنهاد می‌شود.

کلیدواژه‌ها

عنوان مقاله [English]

Evaluation the exposure extent of labors in printing industries with emitted pollutants in indoor environment

نویسندگان [English]

  • Farshad Ahmadilar 1
  • Leila Khazini 2
  • Seyyed Shamedin Alizadeh 3

1 Graduate student, Faculty of chemical and petroleum engineering, University of Tabriz, Tabriz, Iran.

2 Assisstant professor, Faculty of chemical and petroleum engineering, University of Tabriz, Tabriz, Iran.

3 Associate professor, Faculty of health, Tabriz University of Medical Sciences, Tabriz, Iran.

چکیده [English]

Background and Purpose: Emitted pollutants in indoor environment of printing industries are the most serious risks to labor’s health according to WHO. The health effects of these pollutants range from acute diseases like eye irritation to chronic effects such as cancer and DNA damage.

Materials and Methods: To study air pollution in indoor environment of the printing industry, using EPA methodology and ranked set sampling, samples were collected and then analysed through gas chromatography.

Results: Based on the results, despite the concentration profile at the sampling sites, the total concentration of very volatile and volatile organic compounds at the nearest point to the dye tank, the location of the operator at a distance of one and two meters from the heliogravure machine, and the general working space were 20.83%, 5.41%, 1.85% and 1.46%, respectively . About 52% of the observed putants were ink organic solvents, 38% were sulfur compounds and 52% were nitrogen compounds. About 24% of pollutants have a complex structure of 12 carbons or more. The concentrations of pollutants observed not only exceed OSHA and NIOSH standards but also very high compared to similar international research; so that they are in the range of danger code announcement and have worrying health effects on employees.

Conclusiuon: The results indicate the need for urgent intervention to reduce pollution in the printing industry. The preferred method for managing indoor air quality is control or replace the source of pollution, proper air conditioning equipment use, and simultaneous use of filters and air conditioning system to reduce emissions.

کلیدواژه‌ها [English]

  • Indoor air pollution
  • Volatile organic compounds
  • Inhalation exposure
1. Vicente ED, Ribeiro JP, Custódio D, Alves CA. Assessment of the indoor air quality in copy centres at Aveiro, Portugal. Air quality, atmosphere & health. 2017;10(2):117-27. 
2.Kiurski JS, Oros IB, Kecic VS, Kovacevic IM, Aksentijevic SM. The temporal variation of indoor pollutants in photocopying shop. Stochastic environmental research and risk assessment. 2016;30(4):1289-300.
3. Kiurski J, Marić B, Aksentijević S, Oros I, Kecić V. Occupational hazards in printing industry. International journal of environmental science and technology. 2016;13(3):955-72.
4. Cui W, Lu W, Zhang Y, Lin G, Wei T, Jiang L. Gold nanoparticle ink suitable for electric-conductive pattern fabrication using in ink-jet printing technology. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2010;358(1-3):35-41.
5. Rafiei S. Optimization and Production of Polyacrylonitrile Based Activated Carbon Nanofibers for Dye Wastewater Treatment. Journal of color science and technology. 2020;14(4):281-94.
6. Mohammadi HG, Vanashi AK, Ziaratgah MT, Pirgoli M. Nanocomposite Hydrogels Based on Gelatin and Nickel Oxide Nanoparticles for Adsorption of Cationic Pollutants. 2020.
7. Akbari A. Preparation of Azo-based Dyes Using Green Acid Catalysts. 2019.
8. Ahmadian SS, Amani-Ghadim A, Bipir F. Synthesize of Metal Organic Frameworks Based on the Titanium and Investigations of Its Activity in Photocatalytic Removal of Reactive Blue 19 Dye from Aqueous Solution.
9. Khajeh Aminian M, Sajadi F, Mohammadizadeh M, Fatah S. Hydrophilic and Photocatalytic Properties of TiO2/SiO2 Nano-layers in Dry Weather. Progress in Color, Colorants and Coatings. 2021;14(3):221-32.
10. Ewers U, Nowak D. Health hazards caused by emissions of laser printers and copiers? GEFAHRSTOFFE REINHALTUNG DER LUFT-GERMAN EDITION-. 2006;66(5):203.
11. Kagi N, Fujii S, Horiba Y, Namiki N, Ohtani Y, Emi H, et al. Indoor air quality for chemical and ultrafine particle contaminants from printers. Building and Environment. 2007;42(5):1949-54.
12. Koivisto AJ, Hussein T, Niemelä R, Tuomi T, Hämeri K. Impact of particle emissions of new laser printers on modeled office room. Atmospheric Environment. 2010;44(17):2140-6.
13. Mullins BJ, Bertolatti D, Mead-Hunter R. Assessment of polyaromatic hydrocarbon emissions from laser printers. Atmospheric environment. 2013;79:428-32.
14. Tuomi T, Engström B, Niemelä R, Svinhufvud J, Reijula K. Emission of ozone and organic volatiles from a selection of laser printers and photocopiers. Applied Occupational and Environmental Hygiene. 2000;15(8):629-34.
15. Scungio M, Vitanza T, Stabile L, Buonanno G, Morawska L. Characterization of particle emission from laser printers. Science of the Total Environment. 2017;586:623-30.
16. Gu J, Karrasch S, Salthammer T. Review of the characteristics and possible health effects of particles emitted from laser printing devices. Indoor air. 2020;30(3):396-421.
17. Alabdulhadi A, Ramadan A, Devey P, Boggess M, Guest M. Inhalation exposure to volatile organic compounds in the printing industry. Journal of the Air & Waste Management Association. 2019;69(10):1142-69.
18. Voliotis A, Karali I, Kouras A, Samara C. Fine and ultrafine particle doses in the respiratory tract from digital printing operations. Environmental Science and Pollution Research. 2017;24(3):3027-37.
19. Al-Awadi L. Assessment of indoor levels of volatile organic compounds and carbon dioxide in schools in Kuwait. Journal of the Air & Waste Management Association. 2018;68(1):54-72.
20. Nandan A, Siddiqui N, Kumar P. Assessment of environmental and ergonomic hazard associated to printing and photocopying: a review. Environmental geochemistry and health. 2019;41(3):1187-211.
21. Shin N, Velmurugan K, Su C, Bauer AK, Tsai CS. Assessment of fine particles released during paper printing and shredding processes. Environmental Science: Processes & Impacts. 2019;21(8):1342-52.
22. Setyawati MI, Singh D, Krishnan SP, Huang X, Wang M, Jia S, et al. Occupational inhalation exposures to nanoparticles at six Singapore printing centers. Environmental science & technology. 2020;54(4):2389-400.
23. Kiurski JS, Marić BB, Oros IB, Kecić VS. The ecodesign practice in Serbian printing industry. Journal of Cleaner Production. 2017;149:1200-9.
24. Kiurski J, Ranogajec J, Vucetic S, Zoric D, Adamovic S, Oros I, et al. Fired clay with polymer addition as printing developer purifier. Applied clay science. 2012;65:48-52.
25. Kiurski J, Marić B, Adamović D, Mihailović A, Grujić S, Oros I, et al. Register of hazardous materials in printing industry as a tool for sustainable development management. Renewable and Sustainable Energy Reviews. 2012;16(1):660-7.
26. Kiurski JS, Marić BB, Aksentijević SM, Oros IB, Kecić VS, Kovacˇević IM. Indoor air quality investigation from screen printing industry. Renewable and Sustainable Energy Reviews. 2013;28:224-31.
27. Horstman SW, Browning SR, Szeluga R, Burzycki J, Stebbins A. Solvent exposures in screen printing shops. Journal of Environmental Science and Health, Part A. 2001;36(10):1957-73.
28. Decharat S. Prevalence of acute symptoms among workers in printing factories. Advances in preventive medicine. 2014;2014.
29. Ibrahim AA, Hakim SA, El Gewely MS, Wassif GO. Occupational exposures and health profile among workers in an Egyptian printing press. Egyptian Journal of Community Medicine. 2019;37(4):75-83.
30. Goud KI, Shankarapppa K, Vijayashree B, Rao KP, Ahuja Y. DNA damage and repair studies in individuals working with photocopying machines. International Journal of Human Genetics. 2001;1(2):139-43.
31. Shama M. Perceptions and practices regarding Occupational hazards and safety measures among printing workers. Egyptian Journal of Occupational Medicine. 2009;33(2):155-74.
32. Hayta P, Oktav M. The Importance of Waste and Environment Management in Printing Industry. European Journal of Engineering and Natural Sciences. 2019;3(2):18-26.
33. Kandeloos AJ, Bastani S, Mashayekhan S. 3D Bioprinting and Natural Bioinks: Principles and Applications. Journal of Studies in Color World. 2021;10(4):31-51.
34. Ismail OMS, Hameed RSA. Environmental effects of volatile organic compounds on ozone layer. Adv Appl Sci Res. 2013;4(1):264-8.
35. https://www.osha.gov/hazcom/global/ (accessed 19 April, 2021).
36. https://www.tecamgroup.com/acceptable-voc-levels/ (accessed 20 April, 2021).
37. Vilcekova S, Meciarova L. Monitoring of indoor environmental quality in a printing company–Case study. People, Buildings and Environment. 2016.
38. Singh BP, Kumar A, Singh D, Punia M, Kumar K, Jain VK. An assessment of ozone levels, UV radiation and their occupational health hazard estimation during photocopying operation. Journal of hazardous materials. 2014;275:55-62.
39. Ramlan N, Ahmad SNH, Aminuddin E, Hamid HA, Yaman SK, editors. Assessment of indoor air quality in comparison using air conditioning and fan system in printing premise. MATEC Web of Conferences; 2017: EDP Sciences.
40. Meciarova L, Vilcekova S. Determination of VOCs in the Indoor Air of a New and a Renovated Apartment. Selected Scientific Papers: Journal of Civil Engineering. 2016;11(1).
41. Barrese E, Gioffrè A, Scarpelli M, Turbante D, Trovato R, Iavicoli S. Indoor pollution in work office: VOCs, formaldehyde and ozone by printer. Occupational Diseases and Environmental Medicine. 2014;2014.