تعهد نامه

نوع مقاله : مقالات پژوهشی

نویسندگان

1 کارشناسی ارشد، گروه مهندسی بهداشت محیط، معاونت بهداشت دانشگاه علوم پزشکی و خدمات بهداشتی درمانی ایران، تهران، ایران.

2 استادیار، گروه طب ورزش دانشگاه علوم پزشکی و خدمات بهداشتی درمانی ایران، تهران، ایران.

3 استاد، گروه مهندسی بهداشت محیط، دانشگاه علوم پزشکی و خدمات بهداشتی درمانی ایران، تهران، ایران.

4 کارشناسی ارشد، گروه سلامت محیط و کار ، وزارت بهداشت و درمان آموزش پزشکی، تهران، ایران.

5 دکترا، گروه مهندسی بهداشت محیط، دانشگاه علوم پزشکی و خدمات بهداشتی درمانی ایران، تهران، ایران.

6 رییس دبیرخانه ستاد کشوری کنترل دخانیات وزارت بهداشت، درمان و آموزش پزشکی ایران.

7 دکترا، گروه مهندسی بهداشت محیط، معاونت بهداشت، دانشگاه علوم پزشکی و خدمات بهداشتی درمانی ایران، تهران، ایران.

چکیده

زمینه و هدف : تتراسایکلین را می توان یکی از متداول ترین آنتی بیوتیک ها از نظر تولید و مصرف درسراسر جهان برشمرد و به شکل گسترده در پزشکی و دامپزشکی به منظور پیشگیری و درمان بیماری های عفونی مورد مصرف قرار می گیرد. هدف از این مطالعه بررسی کارایی فرایند ترکیبی الکتروپرسولفات با استفاده همزمان واکنش گر پرکسیدهیدروژن در حذف آنتی بیوتیک تتراسایکلین از محیط آبی است.

مواد و روش ها : این پژوهش به صورت ناپیوسته در مقیاس آزمایشگاهی و با استفاده از راکتور الکتروپرسولفات و واکنش گر پرکسیدهیدروژن در دمای محیط انجام شد. در این پژوهش از متدولوژی سطح پاسخ (RSM) بر پایه central composite design (CCD) برای بهینه سازی متغیر فرآیند الکتروپرسولفات و واکنشگر پرکسیدهیدروژن و تاثیر متغییرهای pH، دانستیه جریان، نسبت پرسولفات به پرکسیدهیدروژن بر حذف تتراسایکلین مورد مطالعه قرار گرفت.

یافته ‎ها: حداکثرکارایی حذف تتراسایکلین در فرایند الکتروپرسولفات و استفاده همزمان واکنش گر پرکسیدهیدروژن برابر 95/2 % تحت شرایط 6/5 : pH ، شدت جریان 31 میلی آمپر، نسبت پرسولفات به پرکسید هیدروژن 1/1 بدست آمد. p-value بسیار پایین (0/0001>P) و ضریب همبستگی بالا (R2) برای مدل به دست آمده نشان دهنده کفایت و همبستگی  بالای داده های تجربی و داده های پیش بینی شده توسط مدل است. 

نتیجه‎ گیری: تکنولوژی ترکیبی سازگار با محیط زیست اکسیداسیون پیشرفته مبتنی بر رادیکال سولفات و پرکسیدهیدروژن (EC/PS/HR) برای حذف آلاینده های مقاوم در محیط های آبی متاثر از عوامل مختلفی مانند غلظت فعال کننده (H2O2)، غلظت کاتالیست (پرسولفات) و pH فرایند است. این مطالعه نشان داد که فرایند ترکیبی (EC/PS/HR) قادر به تجزیه و تخریب آلاینده های مقاوم مانند تتراسایکلین از محیط های آبی است. در نهایت می توان گفت که فرایند پرسولفات فعال شده با استفاده از (H2O2) یک فرایند موثر، کارآمد و امیدوارکننده در حذف تتراسایکلین از محلول های آبی است.

کلیدواژه‌ها

عنوان مقاله [English]

Survey of Electropersulfate/H2O2 Efficiency for Treatment Synthetic Wastewater Containing Tetracycline using Response Surface Methology (RSM)

نویسندگان [English]

  • Pezhman Gheitasian 1
  • Seyed Mohammad Tabatabaee jabali 2
  • Ahmad Jonidi Jafari 3
  • Mohsen Farhadi 4
  • Javad Golshani asl 5
  • Behzad Valizadeh 6
  • Maryam Meserghani 7

1 Department of Environmental Health Engineering, Deputy of Health, Iran University of Medical Sciences, Tehran, Iran

2 Associate Professor, Department of sports medicine school of medicine, Iran University of medical sciences, Tehran, Iran.

3 Professor ,Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran.

4 Department of Environmental Health Engineering, Deputy of Health, Iran University of Medical Sciences, Tehran, Iran.

5 Department of Environmental Health Engineering, Deputy of Health, Iran University of Medical Sciences, Tehran, Iran.

6 Head of the National Tobacco Control Secretariat, Ministry of Health and Medical Education.

7 Department of Environmental Health Engineering, Deputy of Health, Iran University of Medical Sciences, Tehran, Iran.

چکیده [English]

Background and Purpose: Tetracycline represents the most prevalent antibiotic group in production and utilization and is extensively employed for the prophylaxis and treatment of infectious diseases in both human and veterinary medicine. The primary objective of this investigation was to assess the efficacy of electro-activated persulfate (EC/PS/HR) for eliminating tetracycline from aqueous solutions.

Materials and Methods: This study was conducted in a batch mode utilizing an electro-activated persulfate (EC/PS/HR) system. All experiments were carried out under constant temperature conditions. Response surface methodology (RSM) in conjunction with a central composite design (CCD) was employed to optimize the variables associated with the electro-activated persulfate and hydrogen peroxide process, including pH, current density, and the persulfate/hydrogen peroxide molar ratio, with the aim of tetracycline removal. Data analysis in this study was performed using Data Designer 8.0.6 software.

Results: The results of this study revealed the use of a quadratic model to predict the impact of independent variables on the efficiency of tetracycline removal in the process. The exceedingly low (p <0.0001) and the high correlation coefficient (R2) of the obtained model signify a robust correlation between experimental and predicted data. The optimal conditions for achieving maximum efficiency in the degradation of tetracycline through electro-activated persulfate were determined to be a pH of 5.6, a persulfate/hydrogen peroxide molar ratio of 1.1, and a current density of 31 mA. Under these conditions, tetracycline degradation reached approximately 95.2%.

Conclusion: Based on the findings of this investigation, it can be deduced that the advanced oxidation process relying on electro-activated persulfate (EC/PS/HR) is capable of eliminating contaminants in aqueous environments, influenced by various factors such as hydrogen peroxide dosage, catalyst concentration (persulfate), and pH. The study highlights the capability of the electro-activated persulfate (EC/PS/HR) hybrid process to decompose recalcitrant pollutants like tetracycline from aqueous environments. Overall, the electro-activated persulfate process demonstrates promise for the degradation of tetracycline in aqueous solutions.

کلیدواژه‌ها [English]

  • Advanced oxidation processes
  • Wastewater treatment
  • Tetracycline
  • Response surface methodology
1.    Xie Y, Chen L, Liu R. Oxidation of AOX and organic compounds in pharmaceutical wastewater in RSM-optimized-Fenton system. Chemosphere. 2016;155:217-24.
2.    Shaykhi ZM, Zinatizadeh AAL. Statistical modeling of photocatalytic degradation of synthetic amoxicillin wastewater (SAW) in an immobilized TiO2 photocatalytic reactor using response surface methodology (RSM). J Taiwan Inst Chem Eng. 2014;45(4):1717-176.
3.    Yazdani M, Najafpoor A, Dehghan A, Alidadi H, Dankoob M, Zangi
R, Nourbakhsh S, Ataei R, Navaei fezabady A. Performance evaluation of com-
bined Ultrasonic/UV process in removal of Tetracycline Antibiotic from aqueous
Solutions using Response surface Methodology. Iranian Journal of Research in
Environmental Health.Spring 2017;3 (1) : 11-20.
4.    Devi P, Das U, Dalai A. In-situ chemical oxidation: Principle and applications of peroxide and persulfate treatments in wastewater systems. Science of The Total Environment. 2016;571:643-57.
5.    Eslami A, Bahrami H, Asadi A, Alinejad A. Enhanced sonochemical degradation of tetracycline by sulfate radicals. Water Science and Technology. 2016;73(6):1293-300.
6.    Hou L, Zhang H, Xue X. Ultrasound enhanced heterogeneous activation of peroxydisulfate by magnetite catalyst for the degradation of tetracycline in water. Separation and Purification Technology. 2012;84:147-52.
7.    Jeong J, et al.,. Degradation of tetracycline antibiotics: mechanisms and kinetic studies for advanced oxidation/reduction processes. Chemosphere. 2010;75(5):533-40.
8.    Ji Y, Shi Y, Dong W, Wen X, Jiang M, Lu J. Thermo-activated persulfate oxidation system for tetracycline antibiotics degradation in aqueous solution. Chemical Engineering Journal. 2016;298:225-33.
9.    Fakhri A, Rashidi S, Tyagi I, Agarwal S, Gupta VK. Photodegradation of Erythromycin antibiotic by γ-Fe2O3/SiO2 nanocomposite: Response surface methodology modeling and optimization. Journal of Molecular Liquids. 2016;214:378-83.
10.    Eslami A, Asadi A, Meserghani M, Bahrami H. Optimization of sonochemical degradation of amoxicillin by sulfate radicals in aqueous solution using response surface methodology (RSM). Journal of Molecular Liquids. 2016;222:739-44.
11.    Yang S, Wang P, Yang X, Shan L, Zhang W, Shao X, et al. Degradation efficiencies of azo dye Acid Orange 7 by the interaction of heat, UV and anions with common oxidants: persulfate, peroxymonosulfate and hydrogen peroxide. Journal of Hazardous Materials. 2010;179(1):552-8.
12.    Ahmed MM, Barbati S, Doumenq P, Chiron S. Sulfate radical anion oxidation of diclofenac and sulfamethoxazole for water decontamination. Chemical engineering journal. 2012;197:440-7.
13.    Gao Y-q, Gao N-y, Deng Y, Yang Y-q, Ma Y. Ultraviolet (UV) light-activated persulfate oxidation of sulfamethazine in water. Chemical Engineering Journal. 2012;195:248-53.
14.    Wang C-W, Liang C. Oxidative degradation of TMAH solution with UV persulfate activation. Chemical Engineering Journal. 2014;254:472-8.
15.    Qi C, Liu X, Lin C, Zhang X, Ma J, Tan H, et al. Degradation of sulfamethoxazole by microwave-activated persulfate: kinetics, mechanism and acute toxicity. Chemical Engineering Journal. 2014;249:6-14.
16.    Olmez-Hanci T, Arslan-Alaton I. Comparison of sulfate and hydroxyl radical based advanced oxidation of phenol. Chemical Engineering Journal. 2013;224:10-6.
17.    Rodríguez-Chueca J, Moreira SI, Lucas MS, Fernandes JR, Tavares PB, Sampaio A, et al. Disinfection of simulated and real winery wastewater using sulphate radicals: Peroxymonosulphate/transition metal/UV-A LED oxidation. Journal of Cleaner Production. 2017;149:805-17.
18.    Wang J, Wang C, Tong S. A novel composite Fe-N/O catalyst for the effective enhancement of oxidative capacity of persulfate at ambient temperature. Catalysis Communications. 2018;103:105-9.
19.    Su S, Guo W, Yi C, Leng Y, Ma Z. Degradation of amoxicillin in aqueous solution using sulphate radicals under ultrasound irradiation. Ultrasonics sonochemistry. 2012;19(3):469-74.
20.    Dhaka S, Kumar R, Khan MA, Paeng K-J, Kurade MB, Kim S-J, et al. Aqueous phase degradation of methyl paraben using UV-activated persulfate method. Chemical Engineering Journal. 2017;321:11-9.
21.    Fang C, Lou X, Huang Y, Feng M, Wang Z, Liu J. Monochlorophenols degradation by UV/persulfate is immune to the presence of chloride: Illusion or reality? Chemical Engineering Journal. 2017;323:124-33.
22.    Izadifard M, Achari G, Langford CH. Degradation of sulfolane using activated persulfate with UV and UV-Ozone. Water Research. 2017;125:325-31.
23.    Hyk W, Kitka K. Highly efficient and selective leaching of silver from electronic scrap in the base-activated persulfate–ammonia system. Waste Management. 2017;60:601-8.
24.    Chen X, Murugananthan M, Zhang Y. Degradation of p-Nitrophenol by thermally activated persulfate in soil system. Chemical Engineering Journal. 2016;283:1357-65.
25.    Manz KE, Carter KE. Investigating the effects of heat activated persulfate on the degradation of furfural, a component of hydraulic fracturing fluid chemical additives. Chemical Engineering Journal. 2017;327:1021-32.
26.    Zheng L, Wang X, Wang X. Reuse of reverse osmosis concentrate in textile and dyeing industry by combined process of persulfate oxidation and lime-soda softening. Journal of Cleaner Production. 2015;108:525-33.
27.    Bu L, Zhou S, Shi Z, Bi C, Zhu S, Gao N. Iron electrode as efficient persulfate activator for oxcarbazepine degradation: Performance, mechanism, and kinetic modeling. Separation and Purification Technology. 2017;178:66-74.
28.    Huang X, An D, Song J, Gao W, Shen Y. Persulfate/electrochemical/FeCl2 system for the degradation of phenol adsorbed on granular activated carbon and adsorbent regeneration. Journal of Cleaner Production. 2017;165:637-44.
29.    Song H, Yan L, Jiang J, Ma J, Zhang Z, Zhang J, et al. Electrochemical activation of persulfates at BDD anode: Radical or nonradical oxidation? Water research. 2018;128:393-401.
30.    Li Y, Yuan X, Wu Z, Wang H, Xiao Z, Wu Y, et al. Enhancing the sludge dewaterability by electrolysis/electrocoagulation combined with zero-valent iron activated persulfate process. Chemical Engineering Journal. 2016;303:636-45.
31.    Duan X, Sun H, Tade M, Wang S. Metal-free activation of persulfate by cubic mesoporous carbons for catalytic oxidation via radical and nonradical processes. Catalysis Today. 2017.
32.    Matzek LW, Carter KE. Sustained persulfate activation using solid iron: Kinetics and application to ciprofloxacin degradation. Chemical Engineering Journal. 2017;307:650-60.
33.    Pu M, Guan Z, Ma Y, Wan J, Wang Y, Brusseau ML, et al. Synthesis of iron-based metal-organic framework MIL-53 as an efficient catalyst to activate persulfate for the degradation of Orange G in aqueous solution. Applied Catalysis A: General. 2018;549:82-92.
34.    Wang S, Wang J. Trimethoprim degradation by Fenton and Fe (II)-activated persulfate processes. Chemosphere. 2018;191:97-105.
35.    Criquet J, Leitner NKV. Electron beam irradiation of aqueous solution of persulfate ions. Chemical Engineering Journal. 2011;169(1):258-62.
36.    De Luca A, He X, Dionysiou DD, Dantas RF, Esplugas S. Effects of bromide on the degradation of organic contaminants with UV and Fe 2+ activated persulfate. Chemical Engineering Journal. 2017;318:206-13.
37.    Goi A, Viisimaa M. Integration of ozonation and sonication with hydrogen peroxide and persulfate oxidation for polychlorinated biphenyls-contaminated soil treatment. Journal of Environmental Chemical Engineering. 2015;3(4):2839-47.
38.    Shiraz AD, Takdastan A, Borghei SM. Photo-Fenton like degradation of catechol using persulfate activated by UV and ferrous ions: Influencing operational parameters and feasibility studies. Journal of Molecular Liquids. 2018;249:463-9.
39.    Peng L, Wang L, Hu X, Wu P, Wang X, Huang C, et al. Ultrasound assisted, thermally activated persulfate oxidation of coal tar DNAPLs. Journal of hazardous materials. 2016;318:497-506.
40.    Duran A, Monteagudo J, Exposito A, Monsalve V. Modeling the sonophoto-degradation/mineralization of carbamazepine in aqueous solution. Chemical Engineering Journal. 2016;284:503-12.
41.    Asghar A, Raman AAA, Daud WMAW. Advanced oxidation processes for in-situ production of hydrogen peroxide/hydroxyl radical for textile wastewater treatment: a review. Journal of cleaner production. 2015;87:826-38.
42.    Monteagudo J, Durán A, González R, Expósito A. In situ chemical oxidation of carbamazepine solutions using persulfate simultaneously activated by heat energy, UV light, Fe 2+ ions, and H 2 O 2. Applied Catalysis B: Environmental. 2015;176:120-9.
43.    Expósito A, Monteagudo J, Durán A, Fernández A. Dynamic behavior of hydroxyl radical in sono-photo-Fenton mineralization of synthetic municipal wastewater effluent containing antipyrine. Ultrasonics sonochemistry. 2017;35:185-95.
44.    Mercado DF, Bracco LL, Arques A, Gonzalez MC, Caregnato P. Reaction kinetics and mechanisms of organosilicon fungicide flusilazole with sulfate and hydroxyl radicals. Chemosphere. 2018;190:327-36.
45.    Liu X, Yuan S, Tong M, Liu D. Oxidation of trichloroethylene by the hydroxyl radicals produced from oxygenation of reduced nontronite. Water Research. 2017;113:72-9.
46.    Xie P, Ma J, Liu W, Zou J, Yue S, Li X, et al. Removal of 2-MIB and geosmin using UV/persulfate: contributions of hydroxyl and sulfate radicals. Water research. 2015;69:223-33.
47.    Yang Y, Jiang J, Lu X, Ma J, Liu Y. Production of sulfate radical and hydroxyl radical by reaction of ozone with peroxymonosulfate: a novel advanced oxidation process. Environmental science & technology. 2015;49(12):7330-9.
48.    Yang Y, Pignatello JJ, Ma J, Mitch WA. Comparison of halide impacts on the efficiency of contaminant degradation by sulfate and hydroxyl radical-based advanced oxidation processes (AOPs). Environmental science & technology. 2014;48(4):2344-51.
49.    Myers RH, Montgomery DC, Vining GG, Borror CM, Kowalski SM. Response surface methodology: a retrospective and literature survey. Journal of quality technology. 2004;36(1):53.
50.    Keshtegar B, Mert C, Kisi O. Comparison of four heuristic regression techniques in solar radiation modeling: Kriging method vs RSM, MARS and M5 model tree. Renewable and Sustainable Energy Reviews. 2018;81:330-41.
51.    Tan YH, Abdullah MO, Nolasco-Hipolito C, Zauzi NSA. Application of RSM and Taguchi methods for optimizing the transesterification of waste cooking oil catalyzed by solid ostrich and chicken-eggshell derived CaO. Renewable Energy. 2017;114:437-47.
52.    Milani Shirvan K, Mamourian M, Mirzakhanlari S, Ellahi R. Two phase simulation and sensitivity analysis of effective parameters on combined heat transfer and pressure drop in a solar heat exchanger filled with nanofluid by RSM. Journal of Molecular Liquids. 2016;220:888-901.
53.    Singh A, Garg H, Lall AK. Optical polishing process: Analysis and optimization using response surface methodology (RSM) for large diameter fused silica flat substrates. Journal of Manufacturing Processes. 2017;30:439-51.
54.    Ragavendran M, Chandrasekhar N, Ravikumar R, Saxena R, Vasudevan M, Bhaduri A. Optimization of hybrid laser–TIG welding of 316LN steel using response surface methodology (RSM). Optics and Lasers in Engineering. 2017;94:27-36.
55.    Soundararajan R, Ramesh A, Mohanraj N, Parthasarathi N. An investigation of material removal rate and surface roughness of squeeze casted A413 alloy on WEDM by multi response optimization using RSM. Journal of Alloys and Compounds. 2016;685:533-45.
56.    Long A, Zhang H, Lei Y. Surfactant flushing remediation of toluene contaminated soil: Optimization with response surface methodology and surfactant recovery by selective oxidation with sulfate radicals. Separation and Purification Technology. 2013;118:612-9.
57.    Trinh H, Yusup S, Uemura Y. Optimization and kinetic study of ultrasonic assisted esterification process from rubber seed oil. Bioresource Technology. 2018;247:51-7.
58.    Salarian A-A, Hami Z, Mirzaei N, Mohseni SM, Asadi A, Bahrami H, et al. N-doped TiO 2 nanosheets for photocatalytic degradation and mineralization of diazinon under simulated solar irradiation: Optimization and modeling using a response surface methodology. Journal of Molecular Liquids. 2016;220:183-91.
59.    Charoen K, Prapainainar C, Sureeyatanapas P, Suwannaphisit T, Wongamornpitak K, Kongkachuichay P, et al. Application of response surface methodology to optimize direct alcohol fuel cell power density for greener energy production. Journal of Cleaner Production. 2017;142:1309-20.
60.    Malik D, Pakzad L. Experimental investigation on an aerated mixing vessel through electrical resistance tomography (ERT) and response surface methodology (RSM). Chemical Engineering Research and Design. 2018;129:327-43.
61.    Ohale P, Uzoh CF, Onukwuli OD. Optimal Factor Evaluation for the Dissolution of Alumina from Azaraegbelu Clay in Acid Solution using RSM and ANN comparative analysis. south african journal of chemical engineering. 2017;24:43-54.
62.    Morero B, Groppelli ES, Campanella EA. Evaluation of biogas upgrading technologies using a response surface methodology for process simulation. Journal of Cleaner Production. 2017;141:978-88.
63.    Sharma J, Anand P, Pruthi V, Chaddha AS, Bhatia J, Kaith B. RSM-CCD optimized adsorbent for the sequestration of carcinogenic rhodamine-B: Kinetics and equilibrium studies. Materials Chemistry and Physics. 2017;196:270-83.
64.    Bu L, Zhu S, Zhou S. Degradation of artazine by electrochemically activated persulfate using BDD anode: Role of radicals and influencing factors. Chemosphere. 2018;195:236-44.
65.    Cai j, zhou M, Liu Y, Savall A, Serrano K. Indirect electrochemical oxidation of 2,4-dichlorophenoxyacetic acid using electrochemically-generated persulfate. Chemosphere. 2018;204:163-9.
66.    Bekkouche S, Merouani S, Hamdaoui O, Bouhelassa M. Efficient photocatalytic degradation of Safranin O by integrating solar-UV/TiO 2/Persulfate treatment: Implication of sulfate radical in the oxidation process and effect of various water matrix components. Journal of Photochemistry and Photobiology A: Chemistry. 2017.
67.    Lu X, Shao Y, Gao N, Chen J, Deng H, Chu W, et al. Investigation of clofibric acid removal by UV/persulfate and UV/chlorine processes: Kinetics and formation of disinfection byproducts during subsequent chlor (am) ination. Chemical Engineering Journal. 2018;331:364-71.
68.    Qi C, Liu X, Lin C, Zhang H, Li X, Ma J. Activation of peroxymonosulfate by microwave irradiation for degradation of organic contaminants. Chemical Engineering Journal. 2017;315:201-9.
69.    Feng Y, Song Q, Lv W, Liu G. Degradation of ketoprofen by sulfate radical-based advanced oxidation processes: Kinetics, mechanisms, and effects of natural water matrices. Chemosphere. 2017;189:643-51.
70.    Dong H, Zhang C, Hou K, Cheng Y, Deng J, Jiang Z, et al. Removal of trichloroethylene by biochar supported nanoscale zero-valent iron in aqueous solution. Separation and Purification Technology. 2017;188:188-96.
71.    Liang C, Wang Z-S, Bruell CJ. Influence of pH on persulfate oxidation of TCE at ambient temperatures. Chemosphere. 2007;66(1):106-13.
72.    Ghanbari F, Moradi M, Gohari F. Degradation of 2, 4, 6-trichlorophenol in aqueous solutions using peroxymonosulfate/activated carbon/UV process via sulfate and hydroxyl radicals. Journal of Water Process Engineering. 2016;9:22-8.
73.    Durán A, Monteagudo J, San Martín I, Amunategui F, Patterson D. Mineralization of aniline using hydroxyl/sulfate radical-based technology in a waterfall reactor. Chemosphere. 2017;186:177-84.
74.    Lin J-C, Lo S-L, Hu C-Y, Lee Y-C, Kuo J. Enhanced sonochemical degradation of perfluorooctanoic acid by sulfate ions. Ultrasonics sonochemistry. 2015;22:542-7.
75.    Caia C, Zhanga Z, Zhang H. Electro-assisted heterogeneous activation of persulfate by Fe/SBA-15for the degradation of Orange II. Hazardous Materials. 2016;313:209-18.
76.    Chakma S, Praneeth S, Moholkar VS. Mechanistic investigations in sono-hybrid (ultrasound/Fe 2+/UVC) techniques of persulfate activation for degradation of Azorubine. Ultrasonics sonochemistry. 2016.
77.    chen w, Huang C. Mineralization of aniline in aqueous solution by electro-activated persulfate oxidatin enhanced with ultrasound. Chemical Engineering Journal. 2015;266:279-88.