تعهد نامه

نوع مقاله : مقالات پژوهشی

نویسندگان

1 مرکز تحقیقات بهداشت محیط، دانشکده بهداشت و تغذیه، دانشگاه علوم پزشکی لرستان، خرم آباد، ایران.

2 گروه ﻣﻬﻨﺪﺳﻰ ﺑﻬﺪﺍﺷﺖ ﻣﺤﻴﻂ، ﺩﺍﻧﺸﻜﺪﻩ ﺑﻬﺪﺍﺷﺖ بم، ﺩﺍﻧﺸﮕﺎﻩ ﻋﻠﻮﻡ ﭘﺰﺷﻜﻰ بم، بم، ﺍﻳﺮﺍﻥ.

3 گروه ﻣﻬﻨﺪﺳﻰ ﺑﻬﺪﺍﺷﺖ ﻣﺤﻴﻂ، ﺩﺍﻧﺸﻜﺪﻩ ﺑﻬﺪﺍﺷﺖ مشهد، ﺩﺍﻧﺸﮕﺎﻩ ﻋﻠﻮﻡ ﭘﺰﺷﻜﻰ مشهد، مشهد، ﺍﻳﺮﺍﻥ.

چکیده

سابقه و هدف: نیتروآنیلین یکی از مشتقات آنیلین با درجه سمیت بالا، خاصیت سرطان زایی بالقوه و اثرات جهش زایی است. یکی از تکنولوژی های موثر در حذف این ترکیبات از محلولهای آبی استفاده از فرایندهای اکسیداسیون پیشرفته ( AOP) است. این مطالعه با هدف بررسی کارایی فرایند پرسولفات فعال شده در حذف نیتروآنیلین از محلولهای آبی تحت شرایط آزمایشگاهی انجام شد.

مواد و روش ها: جهت انجام این مطالعه، تاثیر متغیرهای مورد مطالعه شامل pH (3 تا 11) زمان تماس (15 تا 120 دقیقه)، غلظت نیتروآنیلین (1 تا 30 میلی گرم در لیتر) و غلظت پرسولفات (100 تا 800 میلی گرم در لیتر) بر روی نمونه های سنتتیک بررسی شد. بعد از انجام فرایند، غلظت باقیمانده نیتروآنیلین با دستگاه اسپکتوفوتومتر -visUV در طول موج 530 نانومتر قرائت گردید. جهت تجزیه و تحلیل داده های بدست آمده، از آنالیز Independent-t و آمار توصیفی شامل میانگین و انحراف معیار استفاده شد.

یافته ها: بیشترین راندمان حذف نیتروآنیلین توسط فرایند پرسولفات فعال شده با نورپالسی تحت شرایط بهینه بدست آمده از آزمایشات شامل زمان تماس تعادلی 90 دقیقه، pH 8، غلظت پرسولفات فعال شده 600 ملیگرم در لیتر و غلظت نیتروآنیلین 1 میلی گرم در لیتر، 98/2درصد بدست آمد. نتایج نشان داد که فرایند فتوکاتالیستی پرسولفات فعال شده با نور پالسی از مدل سینتیک درجه دوم پیروی می نماید.

نتیجه گیری: بر اساس نتایج بدست آمده از این مطالعه فرایند پرسولفات فعال شده با نور پالسی تاثیر بالایی در حذف نیتروآنیلین از محلول های آبی داشت. لذا بدلیل راندمان بالای حذف، مقرون به صرفه بودن و راهبری ساده، استفاده از این فرایند در حذف آلاینده های آلی و مقاوم از محلولهای آبی توصیه می گردد.

کلیدواژه‌ها

عنوان مقاله [English]

Evaluating the efficiency of photo catalytic process of persulfate activated with pulsed light in removing nitroaniline from aqueous solutions

نویسندگان [English]

  • Ali Toolabi 1
  • Fateme Hassanabadi 1
  • Elham Ahmadi Beldachi 2
  • Nasrin Rezaizad 1
  • Ziaeddin Bonyadi 3

1 Environmental Health Research Center, School of Health and Nutrition, Lorestan University of Medical Sciences, Khorramabad, Iran.

2 Department of Environmental Health Engineering, School of Health, Bam University of Medical Sciences, Bam, Iran.

3 Department of Environmental Health Engineering, School of Health, Mashhad University of Medical Sciences, Mashhad, Iran

چکیده [English]

Background and Purpose: Nitroaniline is a derivative of aniline known for its high toxicity, potential carcinogenicity, and mutagenic effects. A practical method for removing these compounds from aqueous solutions is applying advanced oxidation processes (AOPs). This study aims to investigate the efficiency of the activated persulfate process in removing nitroaniline from aqueous solutions under controlled laboratory conditions.

Materials and Methods: To conduct this study, the impact of various variables, including pH levels (ranging from 3 to 11), contact time (15 to 120 minutes), nitroaniline concentration (ranging from 1 to 30 mg/L), and persulfate concentration (ranging from 100 to 800 mg/L), on synthetic samples was examined. Post-treatment, the remaining nitroaniline concentration was measured using a UV-vis spectrophotometer at 530 nm. Independent t-tests and descriptive statistics, including mean and standard deviation, were employed to analyze the acquired data.

Results: The activated persulfate process with pulsed light achieved the highest nitroaniline removal efficiency at 98.2%. This result was obtained under specific conditions: a contact time of 90 minutes, a pH level of 8, an activated persulfate concentration of 600 mg/L, and a nitroaniline concentration of 1 mg/L. Our findings indicate that the photocatalytic process of persulfate activated by pulsed light adheres to the second-order kinetic model.

Conclusion: Based on the outcomes of this study, the persulfate process activated by pulsed light displayed significant effectiveness in removing nitroaniline from aqueous solutions. Therefore, owing to its high removal efficiency, cost-effectiveness, and straightforward management, it is recommended to employ this process to remove organic and resistant pollutants from aqueous solutions.

کلیدواژه‌ها [English]

  • Activated persulfate
  • Pulsed light
  • Nitroaniline
  • Photocatalyst
1. Karunanayake AG, Todd OA, Crowley ML, Ricchetti LB, Pittman CU, Anderson R, et al. Rapid removal of salicylic acid, 4-nitroaniline, benzoic acid and phthalic acid from wastewater using magnetized fast pyrolysis biochar from waste Douglas fir. Chemical Engineering Journal. 2017; 319: 75-88.
2. Serrano-Martínez A, Mercader-Ros MT, Martínez-Alcalá I, Lucas-Abellán C, Gabaldón JA, Gómez-López VM. Degradation and toxicity evaluation of azo dye Direct red 83:1 by an advanced oxidation process driven by pulsed light. Journal of Water Process Engineering. 2020; 37: 101530.
3. Malakootian M, Gharaghani MA, Dehdarirad A, Khatami M, Ahmadian M, Heidari MR, et al. ZnO nanoparticles immobilized on the surface of stones to study the removal efficiency of 4-nitroaniline by the hybrid advanced oxidation process(UV/ZnO/O3). Journal of Molecular Structure. 2019; 1176: 766-76.
4. Mei X, Wang Y, Yang Y, Xu L, Wang Y, Guo Z, et al. Enhanced treatment of nitroaniline-containing wastewater by a membrane-aerated biofilm reactor: Simultaneous nitroaniline degradation and nitrogen removal. Separation and Purification Technology. 2020; 248: 117078.
5. Mei X, Ding Y, Wang Y, Yang Y, Xu L, Wang Y, et al. A novel membrane-aerated biofilter for the enhanced treatment of nitroaniline wastewater: Nitroaniline biodegradation performance and its influencing factors. Bioresource Technology. 2020; 307: 123241.
6. Mahmoud ME, Abdou AEH, Shehata AK, Header HM, Hamed EA. Behavior of γ-Al2O3-bonded-3-chloropropyltrimethoxysilane nanosorbent toward potential binding and removal of 4-nitroaniline and 2-amino-3-nitro-pyridine from water. Journal of Molecular Liquids. 2016; 224: 1358-69.
7. Bakhsh EM, Ali F, Khan SB, Marwani HM, Danish EY, Asiri AM. Copper nanoparticles embedded chitosan for efficient detection and reduction of nitroaniline. International Journal of Biological Macromolecules. 2019; 131: 666-75.
8. Şenlik K, Gezici O, Guven I, Pekacar AI. Adsorption of nitroaniline positional isomers on humic acid-incorporated monolithic cryogel discs: Application of ligand-exchange concept. Journal of Environmental Chemical Engineering. 2017; 5(3): 2836-44.
9. Zhao YS, Sun C, Sun JQ, Zhou R. Kinetic modeling and efficiency of sulfate radical-based oxidation to remove p-nitroaniline from wastewater by persulfate/Fe3O4 nanoparticles process. Separation and Purification Technology. 2015; 142: 182-8.
10. Martínez-López S, Lucas-Abellán C, Serrano-Martínez A, Mercader-Ros MT, Cuartero N, Navarro P, et al. Pulsed light for a cleaner dyeing industry: Azo dye degradation by an advanced oxidation process driven by pulsed light. Journal of Cleaner Production. 2019; 217: 757-66.
11. Guo H, Jiang N, Wang H, Lu N, Shang K, Li J, et al. Pulsed discharge plasma assisted with graphene-WO3 nanocomposites for synergistic degradation of antibiotic enrofloxacin in water. Chemical Engineering Journal. 2019; 372: 226-40.
12. Guo H, Jiang N, Wang H, Shang K, Lu N, Li J, et al. Degradation of flumequine in water by pulsed discharge plasma coupled with reduced graphene oxide/TiO2 nanocomposites. Separation and Purification Technology. 2019; 218: 206-16.
13. Faghihzadeh F, Anaya NM, Hadjeres H, Boving TB, Oyanedel-Craver V. Pulse UV light effect on microbial biomolecules and organic pollutants degradation in aqueous solutions. Chemosphere. 2019; 216: 677-83.
14. Navarro P, Gabaldón JA, Gómez-López VM. Degradation of an azo dye by a fast and innovative pulsed light/H2O2 advanced oxidation process. Dyes and Pigments. 2017; 136: 887-92.
15. Gómez-Morte T, Gómez-López VM, Lucas-Abellán C, Martínez-Alcalá I, Ayuso M, Martínez-López S, et al. Removal and toxicity evaluation of a diverse group of drugs from water by a cyclodextrin polymer/pulsed light system. Journal of Hazardous Materials. 2021; 402: 123504.
16. Eskandarian MR, Ganjkhanloo M, Rasoulifard MH, Hosseini SA. Energy-efficient removal of acid red 14 by UV-LED/persulfate advanced oxidation process: Pulsed irradiation, duty cycle, reaction kinetics, and energy consumption. Journal of the Taiwan Institute of Chemical Engineers. 2021; 127: 129-39.
17. Gómez-López VM, Ragaert P, Debevere J, Devlieghere F. Pulsed light for food decontamination: a review. Trends in Food Science & Technology. 2007;18(9):464-73.
18. Daneshvar, N., et al., Removal of C.I. Acid Orange 7 from aqueous solution by UV irradiation in the presence of ZnO nanopowder. Journal of Hazardous Materials, 2007. 143(1–2): p. 95-101.
19. Lin, C.-C., L.-T. Lee, and L.-J. Hsu, Performance of UV/S2O82− process in degrading polyvinyl alcohol in aqueous solutions. Journal of Photochemistry and Photobiology A: Chemistry, 2013. 252(0): p. 1-7.
20. Jin R, Qiu Z, Cheng W, Jin X. Photocatalytic degradation of aniline by magnetic nanomaterials Fe3O4@ SiO2@ BiO1. 8· 0.04 H2O/Ag3PO4. Chemical Physics Letters. 2020; 755: 137747.
21. Tang H, Li J, Bie Y, Zhu L, Zou J. Photochemical removal of aniline in aqueous solutions: switching from photocatalytic degradation to photo-enhanced polymerization recovery. Journal of Hazardous materials. 2010 Mar 15; 175(1-3):977-84.
22. Monteagudo JM, Durán A, San Martín I, Vellón B. Photocatalytic degradation of aniline by solar/TiO2 system in the presence of the electron acceptors Na2S2O8 and H2O2. Separation and Purification Technology. 2020; 238: 116456.
23. Ruixia Yuan, Zhaohui Wang, Yin Hu, Baohui Wang, Simeng Gao. Probing the radical chemistry in UV/persulfate-based saline wastewater treatment: Kinetics modeling and byproducts identification. Chemosphere 109 (2014) 106–112.
24. Wang Songlin, Zhou Ning, Wu Si, Zhang Qi, Yang Zhi. Modeling the oxidation kinetics of sono-activated persulfate’s process on the degradation of humic acid. Ultrasonics Sonochemistry 23 (2015) 128–134. 
25. Chengdu Qi, Xitao Liu, Chunye Lin, Xiaohui Zhang, Jun Ma, Haobo Tan, Wan Ye. Degradation of sulfamethoxazole by microwave-activated persulfate: Kinetics, mechanism and acute toxicity. Chemical Engineering Journal 249 (2014) 6–14. 
26. Ma G, Lu J, Meng Q, Lv H, Shui L, Zhang Y, Jin M, Chen Z, Yuan M, Nötzel R, Wang X. Synergistic effect of Cu-ion and WO3 nanofibers on the enhanced photocatalytic degradation of Rhodamine B and aniline solution. Applied Surface Science. 2018; 451: 306-14.
27. Rajabizadeh K, Yazdanpanah GH, Dowlatshahi SH, Malakootian M. Photooxidation Process Efficiency (UV/O3) for P-nitroaniline Removal from Aqueous Solutions. Ozone: Science & Engineering. 2020; 42(5): 420-427.
28. Algabary HD, Removal of Aniline from Aqueous Solution by Adsorption on a Modified Montmorillonite Clay Kinetic and Thermodynamic Studie. Oriental journal of chemistry. 2023; 39(2):403-416.
29. Nisreen SA, Hasan S, Albayati M, Jasi D. Adsorption of aniline from aqueous solutions onto a nanoporous material adsorbent: isotherms, kinetics, and mass transfer mechanism. Water Practice & Technology 2023;18(9):1-15.
30. Bazrafshan E, Noorzaei S, Mostafapour FK, Photocatalytic Degradation of Aniline in Aqueous Solutions Using Magnesium Oxide Nanoparticles, J Mazandaran Univ Med Sci 2016; 26(139): 126-136.