مطالعه ایزوترمی و سینتیکی جذب کروم شش ظرفیتی به‌وسیله علف هرز اویارسلام ارغوانی (Cyperus rotundus) اصلاح‌ شده از محیط‌ های آبی

نوع مقاله: Research Paper

نویسندگان

1 عضو هیئت‌علمی گروه مهندسی بهداشت محیط- مرکز تحقیقات ارتقای سلامت، دانشگاه علوم پزشکی زاهدان، زاهدان، ایران

2 کمیته تحقیقات دانشجویی، دانشگاه علوم پزشکی مازندران، ساری، ایران

چکیده

مقدمه و هدف: کروم از مهم‌ترین فلزات سنگین به شمار می‌آید که در بسیاری از فاضلاب‌های صنعتی پیدا می‌شود و مخاطرات بهداشتی و زیست‌محیطی دارد؛ بنابراین، هدف از این مطالعه بررسی کارایی بیومس علف هرز اویارسلام ارغوانی در حذف کروم شش ظرفیتی از محلول‌های آبی است.
 مواد و روش‌ها: این مطالعه به‌صورت تجربی و در مقیاس آزمایشگاهی انجام شد. تغییرات pH، دز جاذب، زمان تماس و غلظت کروم بر عملکرد جاذب تعیین و ایزوترم‌ها و سنتیک‌های جذب بررسی شدند و غلظت باقی‌مانده با استفاده از اسپکتروفتومتر در طول‌موج   540 نانومتر آنالیز گردید.
یافته‌ها: یافته‌های این تحقیق نشان داد pH معادل 3، غلظت اولیه کروم 10 میلی‌گرم بر لیتر، دز جاذب 4 گرم بر لیتر و زمان تماس 60 دقیقه، به‌عنوان شرایط بهینه تعیین شدند. میزان حذف کروم شش ظرفیتی در بهترین شرایط 99 درصد بود. نتایج مطالعه، جذب بیشترین همبستگی را با مدل لانگمیر و سنتیک درجه ‌دو نشان داد و حداکثر ظرفیت جذب بر اساس مدل لانگمیر  12/10 به دست آمد.
نتیجه‌گیری: نتایج به‌دست‌آمده از انجام آزمایش‌ها مشخص کرد که می‌توان از فرایند جذب زیستی، به‌عنوان روشی مؤثر و سریع در حذف کروم شش ظرفیتی استفاده نمود

کلیدواژه‌ها


عنوان مقاله [English]

A study on Kinetics modeling and isotherms for removal of Cr (VI) from aqueous solution by modified Cyperus rotundus Weed biomass

نویسندگان [English]

  • Davoud Balarak 1
  • Edris Bazrafshan 1
  • Yousef Mahdavi 2
1 Department of Environmental Health, Health Promotion Research Center, School of Public Health, Zahedan University of Medical Sciences, Zahedan, Iran.
2 Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
چکیده [English]

Background & objective: Chromium, found in many industrial effluents, is one of most important heavy metal with health and environmental risks. Therefore, the aim of this study is to survey the effect of Cr (VI) removal by using Cyperus rotundus Weed biomass.

Material & methods: This empirical study was done in lab scale. The variation of pH, dose of adsorbent, contact time, and concentration of chromium were investigated. The adsorption data was explained by adsorption isotherms and kenitics.The residual concentration was analyzed by spectrophotometer in maximum wavelength of 540 nm.

Results: It was determined that the pH value of 3, contact time of 60 min, adsorbent dosage of 4 g/L and Cr (VI) concentration of 10 mg/L were the optimum conditions for adsorbents. The most Cr (VI) removal efficiency of 99% was obtained for Cystoseira indica biomass in optimum conditions. The equilibrium data is best fitted on Langmuir isotherm and the adsorption kinetic model follows pseudo-second model. The maximum capacity of adsorption was 10.12 mg/g.

conclusion: The results revealed that by using Bio-absorption the removal of Cr+6  can be done quickly and effectively.

کلیدواژه‌ها [English]

  • Cr+6
  • Cyperus rotundus
  • Kinetic Model
  • Isotherm Model
  • adsorption
1.         Sari A, Tuzen M. Kinetic and equilibrium studies of biosorption of Pb(II) and Cd(II) from aqueous solution by macrofungus (Amanita rubescens) biomass. Journal of Hazardous Materials. 2009;164(2-3):1004-11.

2.         Bennicelli R, Stepniewska Z, Banach A, Szajnocha K, Ostrowski J. The ability of Azolla caroliniana to remove heavy metals (Hg(II), Cr(III), Cr(VI)) from municipal waste water. Chemosphere. 2004;55(1):141-6.

3.         Zhang S, Yang J, Xin X, Yan L, Wei Q, Dua B. Adsorptive Removal of Cr(VI) from Aqueous Solution onto Different Kinds of Modified Bentonites. Environmental Progress & Sustainable Energy.2014;34(1),56-61.

4.         Kumar PA, Ray M, Chakraborty S. Hexavalent chromium removal from wastewater using aniline formaldehyde condensate coated silica gel. Journal of Hazardous Materials. 2007;143(1–2):24-32.

5.         Mohan D, Singh KP, Singh VK. Trivalent chromium removal from wastewater using low cost activated carbon derived from agricultural waste material and activated carbon fabric cloth. Journal of Hazardous Materials. 2006;135(1–3):280-95.

6.         Zhang H, Tang Y, Cai D, Liu X, Wang X, Huang Q, et al. Hexavalent chromium removal from aqueous solution by algal bloom residue derived activated carbon: Equilibrium and kinetic studies. Journal of Hazardous Materials. 2010;181(1–3):801-8.

7.         Li F, Chen Y, Huang H,  Cao W, Li T. Removal of rhodamine B and Cr(VI) from aqueous solutions by a polyoxometalate adsorbent. Chemical Engineering Research and Design.2015; 100; 192–202.

8.         Maheshwari U, Gupta S. Removal of Cr(VI) from Wastewater Using a Natural Nanoporous Adsorbent: Experimental, Kinetic and Optimization Studies.2014;33(1);71-78.

9.         Siboni MS, Samadi MT, Azizian S, Maleki A, Zarrabi5 M. Removal of Chromium by Using of Adsorption onto Strong Base Anion Resin: Study of Equilibrium and Kinetic. Water & wastewater. 2011: (3):10-9.

10.       Liu Y-X, Yuan D-X, Yan J-M, Li Q-L, Ouyang T. Electrochemical removal of chromium from aqueous solutions using electrodes of stainless steel nets coated with single wall carbon nanotubes. Journal of Hazardous Materials. 2011;186(1):473-80.

11.       Chen Y, Gu G. Short-term batch studies on biological removal of chromium from synthetic wastewater using activated sludge biomass. Bioresource Technology. 2005;96(15):1722-9.

12.       Zazouli MA, Balarak D, Mahdavi Y, Ebrahimi M. Adsorption rate of 198 reactive red dye from aqueous solutions by using activated red mud. Iranian journal of health sciences. 2013;1(1):29-40.

13.       Kumar Naiya T,   Kumar Das S. Removal of Cr(VI) from aqueous solution using fly ash of different sources. Desalination and Water Treatment.2015;10(1);37-42.

14.       Zazouli MA, Balarak D, Mahdavi Y, Barafrashtehpour M, Ebrahimi M. Adsorption of Bisphenol from Industrial Wastewater by Modified Red Mud. Journal of Health & Development. 2013;2(1):1-11.

15.       Sari A, Tuzen M. Biosorption of Pb(II) and Cd(II) from aqueous solution using green alga (Ulva lactuca) biomass. Journal of Hazardous Materials. 2008;152(1):302-8.

16.       Zazouli MA, Balarak D, Mahdavi Y. Application of Azolla for 2, 4, 6-Trichlorophenol (TCP) Removal from aqueous solutions. Hyhiene sciences. 2014;2(4):17-24.

17.       Diyanati RA, Balarak D, Mahdavi Y. Survey of efficiency agricultural weast in removal of acid orang 7(AO7) dyes from aqueous solution: kinetic and equilibrium study: Iranian journal of health sciences. 2013;2(1):35-40.

18.       Balarak D, Pirdadeh, F. & Mahdavi Y. Biosorption of Acid Red 88 dyes using dried Lemna minor biomass. Journal of Science, Technology & Environment Informatics.2015; 01(02), 81–90.

19.       Rozkhash M, Eslami SV. The effect of the sun on  Soil for Control Cyperus rotundus. Journal of Plant Protection. 2015; 28(4);579-588.

20.       Mohammadvand E ,Rashed Mohassel MH,Nasiri mahallati  M. Characterizing Distribution and Stability of Purple Nutsedge Population Using Geostatistics over two Growing Seasons.Iranian Journal of Weed Science. 2007;3(1- 2);1-21.

21.       Webster  TM. Patch  expansion  of  purple  nutsedge  (Cyperus  rotundus  and  yellow  nutsedge  (Cyperus esculentus) with and without polyethylene mulch Weed Science.2005; 53: 839-845.

22.       Suyambooa BK ,Srikrishnaperumala R. Biosorption of crystal violet onto cyperus rotundus in batch system: kinetic and equilibrium modeling.Desalination and Water Treatment.2014;52;(19-21)3535-3546.

23.       Zazouli MA, Ebrahimi M, Balarak D. Isotherm and kinetic modeling p-crosol absorption from aqueous solutions by Cyperus rotundus. Sixteenth National Conference on Environmental Health. Tabriz;  iran; 2013;89.

24.       Rakhshaee R, Khosravi M, Ganji MT. Kinetic modeling and thermodynamic study to remove Pb(II), Cd(II), Ni(II) and Zn(II) from aqueous solution using dead and living Azolla filiculoides. Journal of Hazardous Materials. 2006;134(1-3):120-9.

25.       Balarak D, Mahdavi Y, Gharibi F, Sadeghi Sh. Removal of hexavalent chromium from aqueous solution using canola biomass: Isotherms and kinetics studies. J Adv Environ Health Res.2014; 2(4);45-52.

26.       Lesage E, Mundia C, Rousseau DPL, Van de Moortel AMK, Du Laing G, Meers E, et al. Sorption of Co, Cu, Ni and Zn from industrial effluents by the submerged aquatic macrophyte Myriophyllum spicatum L. Ecological Engineering. 2007;30(4):320-5.

28.       Pradhan J, Das SN, Thakur RS. Adsorption of Hexavalent Chromium from Aqueous Solution by Using Activated Red Mud. Journal of Colloid and Interface Science. 1999;217(1):137-41.

29.       Tan C-y, Li G, Lu X-Q, Chen Z-l. Biosorption of Basic Orange using dried A. filiculoides. Ecological Engineering. 2010;36(10):1333-40.

30.       Tan C-y, Li M, Lin Y-M, Lu X-Q, Chen Z-l. Biosorption of Basic Orange from aqueous solution onto dried A. filiculoides biomass: Equilibrium, kinetic and FTIR studies. Desalination.2011.266(1-3):56-62.

31.       Pazoheshfar SP. Survey Removal of phenol from contaminated water using activated carbon and carbon skin almonds and walnuts. Environmental Science and Technology. 2009;10(4):219-33.

32.       Chojnacka K, Chojnacki A, Gorecka H. Biosorption of Cr3+,Cd2+ and Cu2+ ions by blue–green algae Spirulina sp: kinetics, equilibrium and the mechanism of the process. Chemosphere 2005;59(1):75-84.

33.       Karthik R,  Meenakshi S. Adsorption study on removal of Cr(VI) ions by polyaniline composite.   Desalination and Water Treatment. 2015;54(11); 3083-309.

34.       Dehghani MH, Taher M, Kumar Bajpai A, Heibati B, Tyagi I, Asif M, Removal of noxious Cr (VI) ions using single-walled carbon nanotubes and multi-walled carbon nanotubes. Chemical Engineering Journal. 2015;279; 344–352.

35.       Mehrasbi M, kia ZF. Heavy Metal Removal from Aqueous Solution by Adsorptionon Modified Banana Shell. Health & Enviromental. 2008;1(1):57-66.

36.       Sharma YC. Cr(VI) removal from industrial effluents by adsorption on an indigenous lowcost material. Colloids and surfaces A: Physicochem Eng Asp 2003;215 (1-3): 155-62.

37.       Ponder SM, Darab JG, Mallouk Thomas E. Remediation of Cr(VI) and Pb(II) aqueous solutions using supported, nanoscale zero-valent iron. Environ Sci Technol 2000;34 (12):2564-9.

38.       Kushwaha P, Upadhyay K. Adsorption of pollution load from tannery effluent by using Neem Sawdust as an adsorbent. International Journal of Chemical Studies ;2015; 3(1): 01-03.

39.       Gupta S, Babu BV. Removal of toxic metal Cr(VI) from aqueous solutions using sawdust as adsorbent: Equilibrium, kinetics and regeneration studies. Chem Eng J 2009;150(2-3):352-65.

40.       Heidari A, Younesi H, Mehraban Z. Removal of Cd(II), Ni(II), and Pb(II) Ions in an Aqueous Solution by Chemically Modified Nanoporous MCM-41. Water & wastewater. 2010(1):25-33.

41.       Sen Zhang S, Yang J, Xin X, Yan L, Wei Q, Dua B. Adsorptive Removal of Cr(VI) from Aqueous Solution onto Different Kinds of Modified Bentonites. Environmental Progress & Sustainable Energy.2014;34(1),56-61.

42.       Ishaq M, Khan A, Akbar Jan F.  Removal of Cr(VI) from aqueous solution using brick kiln chimney waste as adsorbent. Desalination and Water Treatment;2015;53(2);45-52.

 43.     Wenxin Li W, Ye Y.Modified wool as adsorbent for the removal of Cr(III) from aqueous solution: adsorption properties, isotherm and kinetics. Research on Chemical Intermediates ;2015;41(2); 803-812