بررسی سمیت رنگزای Reactive Red 120 با استفاده از آزمون زیستی دافنیا مگنیا

نوع مقاله: Research Paper

نویسندگان

1 کارشناس ارشد مهندسی بهداشت محیط، دانشکده بهداشت، دانشگاه علوم پزشکی تهران

2 دانشیار، گروه مهندسی بهداشت محیط، دانشکده بهداشت، دانشگاه علوم پزشکی تهران

چکیده

زمینه و هدف: افزایش استفاده از نانوذرات در صنایع سبب ورود ترکیبات مخاطره آمیز به محیط زیست میگردد. سمیت نانوذرات بعلت آزاد شدن مواد سمی به محیط زیست یکی از نگرانیهای جوامع محسوب میگردد، یکی از این ترکیبات نانوذرات اکسید روی می باشد که در این مطالعه سمیت محلول حاوی رنگ Reactive Red120 بعداز فرایند نانوفوتوکاتالیستی UV/ZnOبا استفاده ازآزمون زیستی دافنیا مگنا مورد بررسی قرارگرفت.
مواد و روش ها: این مطالعه از نوع تجربی – کاربردی بوده که در مقیاس پایلوتی انجام شد. LC50 رنگ Reactive Red 120 بعد از فرآیند  UV/ZnOبا روش زیست آزمونی اندازه گیری شد. آزمایش زیست آزمونی با استفاه از نشانگر زیستی دافنیا مگنا انجام شد. سپس جهت بررسی وتجزیه و تحلیل نتایج آزمون تعیین سمیت با استفاده از نرم افزار spssمشخص و  LC50تعیین گردید.
یافته ها: یافته ها نشان داد که مقادیر LC50 در زمان های 24، 48، 72، 96 ساعته بترتیب 73.16، 55.93، 41.32، 30.45میلی گرم در لیتر می باشد. واحد سمیت به ترتیب برابر1.36، 1.78، 2.42و 3.28 می باشد.
نتیجه گیری: نتایج نشان داد که با افزایش زمان تماس ، مقدار LC50 کاهش یافت، که می توان به این نتیجه رسید این ماده رنگزا بعد از فرآیند UV/ZnO دارای سمیت بر روی دافنیامگنا می باشد

کلیدواژه‌ها


عنوان مقاله [English]

The Evaluating of the Toxicity of Reactive Red 120 Dye by Daphnia Magna Bioassay

نویسندگان [English]

  • Pegah Nakhjirgan 1
  • Mohammad Hadi Dehghani 2
1 MSc, Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
2 Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
چکیده [English]

Background and objective: Increased use of nanoparticles in industries leads to entering hazardous substances to environment. Nanoparticle toxicity due to release of toxic substances into the environment is a concern for communities. One of the common nanoparticles ingredients are zinc oxide. In this study toxicity of the solution containing the Reactive Red 120 dye after Nano-catalytic process UV/ ZnO using biological test Daphnia magna was studied.

Methods: this is a fundamental – practical study, which done on laboratory scale. Toxicity assay tests were carried out using Daphnia magna a bio-indicator. Then results of toxicity tests using SPSS software were analyzed and Lc50were determined.

Results: Results showed that the Lc50 value ​​at 24,48,72,96 hr is 73.16, 55.93, 41.32, 30.45 mg/l and the toxicity unit values are 1.36, 1.78, 2.42, and 3.28, respectively.

Conclusion: the results generally indicated that toxicity increased in process and over time and showed that Reactive Red 120 after UV/ ZnO process was toxic to Daphnia magna.

Paper Type: Research Article

کلیدواژه‌ها [English]

  • UV/ ZnO process
  • Reactive Red 120 dye
  • Bioassay
  • Toxicity
  • Daphnia magna
1. Guzmán KA1, Taylor MR, Banfield JF. Environmental risks of nanotechnology: National Nanotechnology Initiative funding, 2000‐2004. Environ Sci Technol. 2006; 40(5):1401‐7.

2. Simeonova PP, Opopol N, Luster MI. Nanotoxicology,i‐Toxicological lssues and Environemental Safety. Proceeding of the NATO Advanced Research Workshop on Nanotechnology_Toxicological lssues and Environemental Safety. Varna,Bulgaria. 2006.

3. Handy RD1, von der Kammer F, Lead JR, Hassellöv M, Owen R, Crane M. The ecotoxicology and chemistry of manufactured nanoparticles. Ecotoxicology. 2008; 17(4):287‐314.

4. Moore MN. Do nanoparticles present ecotoxicological risks for the health of the 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 30 60 90 120 150 mortality(%) concentration(v/v)% LC50 96h: 30.45123 1394 aquatic environment? Environ Int. 2006; 32(8):967‐76.

5. Nel A1, Xia T, Mädler L, Li N. Toxic potential of materials at the nanolevel. Science. 2006; 311(5761):622‐7.

6. EPA. Nanotechnology White Paper. U.S. Environmental Protection Agency Report EPA 100/B‐07/001, Washington DC 20460, USA. 2007.

7. Nowack B1, Bucheli TD. Occurrence, behavior and effects of nanoparticles in the environment. Environ Pollut. 2007; 150(1):5‐ 22.

8. Wang ZL. Zinc oxide nanostructures: growth, properties and applications. Journal of Physics‐Condensed Matter. 2004; 16 (25):829‐58.

9. Li M1, Lin D, Zhu L. Effects of water chemistry on the dissolution of ZnO nanoparticles and their toxicity to Escherichia coli. Environ Pollut. 2013; 173:97‐102.

10. Meulenkamp EA. Synthesis and growth of ZnO nanoparticles. J Phys Chem B. 1998; 102:5566–72.

11. Liu K, Sakurai M, Aono M. ZnO‐Based Ultraviolet Photodetectors. Sensors (Basel). 2010; 10(9):8604–34.  

12. Behnajady MA1, Modirshahla N, Hamzavi R. Kinetic study on photocatalytic degradation of C.I. Acid Yellow 23 by ZnO photocatalyst. J Hazard Mater. 2006; 133(1‐3):226‐32.

13. Mortimer M1, Kasemets K, Kahru A. Toxicity of ZnO and CuO nanoparticles to ciliated protozoa Tetrahymena thermophila. Toxicology. 2010; 269(2‐3):182‐9.  

14. Bauer C, Jecque P, Kalt A. Photooxidation of an azo dye induced by visible light incident on the surface of TiO2. J Photochem Photobiol A: Chem. 2001; 140(1): 87–92.

15. Houas A, Lachheb H, Ksibi M, Elaloui E, Guillard C, Herrmann JM. Photocatalytic degradation pathway of methylene blue in water. Appl Catal B: Environ. 2001; 31:145–5.

16. Sauer T, Cesconeto Neto G, Jose HJ, Moreira RFPM. Kinetics of photocatalytic degradation of reactive dyes in a TiO2 slurry reactor. J Photochem Photobiol A: Chem. 2002; 149:147–54.

17. So CM, Cheng MY, Yu JC, Wong PK. Degradation of azo dye Procion Red MX‐5B by photocatalytic oxidation. Chemosphere. 2002; 46:905–912.

18. Stolz A. Basic and applied aspects in the microbial degradation of azo dyes. Appl Microbiol Biotechnol. 2001; 56(1‐2):69‐80.

19. Xu XR, Li HB, Wang WH, Gu JD. Degradation of dyes in aqueous solutions by the Fenton process. Chemosphere. 2004; 57(7):595‐ 600.

20. Pearce CI, Lloyd JR, Guthrie JT. The removal of color from textile wastewater using whole bacterial cells: A review. Dyes Pigm. 2003; 58:179–96.

21. Spadaro JT, Isabelle L, Renganathan V. Hydroxyl radical mediated degradation of azo dyes‐ Evidence for benzene generation. Environ Sci Technol. 1994; 28(7):1389‐93.

22. Chakrabarti S1, Dutta BK. Photocatalytic degradation of model textile dyes in wastewater using ZnO as semiconductor catalyst, J. Hazard. Mater. 2004;B 112 269– 278.

23. Chakrabarti S1, Dutta BK. Photocatalytic degradation of isothiazolin‐3‐ons in water and emulsion paints containing nanocrystalline TiO2 and ZnO catalysts. J Hazard Mater. 2004; 112(3):269‐78.

24. Herrmann JM, Guillard C, Pichat P. Heterogeneous photocatalysis: an emerging technology for water treatment. Catalysis Today. 1993; 17(1‐2):7‐20.

25. Legrini O, Oliveros E, Braun AM. Photochemical Processes for Water Treatment. Chem Rev. 1993; 93:671‐98.

26. Yeber MC1, Rodríguez J, Freer J, Durán N, Mansilla HD. Photocatalytic degradation of cellulose bleaching effluent by supported TiO2 and ZnO. Chemosphere. 2000; 41(8):1193‐7.

27. Lin HF, Liao SC, Hung SW. The dc thermal plasma synthesis of ZnO nanoparticles for visible‐light photocatalyst. J Photochem Photobiol A: Chem. 2005; 174(1):82–7.

28. Sakthivel S, Neppolian B, Shankar MV, Arabindoo B, Palanichamy M,

29. Murugesan V. Solar photocatalytic degradation of azo dye: comparison of photocatalytic efficiency of ZnO and TiO2. Sol Energy Mater and Sol Cel. 2003; 77(1):65–82.

30. Wanga  H, Xiea C, Zhanga W, Caib S, Yanga Z, Guib Y. Comparison of dye degradation efficiency using ZnO powders with various size scales. J Hazard Mater. 2007; 141(1):645‐52.

31. APHA,AWWA,WEF. Standard methods for the examination of water and wastewater. 21st Editions,Washigton.2005. 32. Munzinger A, Monicelli F. A comparison of the sensivity of three Daphnia Magna populatios under chronic heavy metal stress. Ecotoxicol Environ Saf. 1991; 22(1):24‐31.

33. Lavens P, Sorgeloos P. Manual on the protection and use of live food for acuaculture. FAO fisheries Technical Paper.1996;NO.361,FAO,Rome.

34. U.S.Environmental Protection Agency. Methods for measuring the acute toxicity of effluents and receiving waters to fresh water and marine organisms, Fifth Edition,EPA‐821‐R‐02‐012. 2007.

35. Fernández‐Alba AR1, Hernando D, Agüera A, Cáceres J, Malato S.Toxicity assays: a way for evaluating AOPs efficiency. Water Res. 2002; 36(17):4255‐62.

36. Immich AP1, Ulson de Souza AA, Ulson de Souza SM. Removal of Remazol Blue RR dye from aqueous solutions with Neem leaves and evaluation of their acute toxicity with Daphnia magna. J Hazard Mater. 2009; 164(2‐3):1580‐5.

37. Villegas‐Navarro A, Gonzalez MCR, Lopez ER, Aguilar RD, Marcal WS. Evaluation of Daphnia magna as an indicator of toxicity and treatment efficacy of textile wastewaters. Environment International. 1999; 25(5):619‐24.

38. Tatjana T, and Agora‐Konan J. Toxicity evaluation of waste from the pharmaceutical industry to aquatic organisms. Wat Sci Tech. 1999; 39(10‐ 11):71‐6.

39. Kasemets K, Ivask A, Dubourguier HC, Kahru A. Toxicity of nanoparticles of ZnO, CuO and TiO2 to yeast Saccharomyces cerevisiae. Toxicol in Vitro. 2009; 23(6):1116‐22.

40. Bystrzejewska‐Piotrowska G, Golimowski J, Urban PL. Nanoparticles: their potential toxicity, waste and environmental management. Waste Manag. 2009; 29(9):2587‐95.

41. Lockman PR, Oyewumi MO, Koziara JM, Roder KE, Mumper RJ, Allen DD. Brain uptake of thiamine‐coated nanoparticles. J Control Release. 2003; 93(3):271‐82.

42. Villegas‐Navarro A1, Ramírez‐M Y, Salvador‐ S MS, Gallardo JM. Determination of wastewater Lc50 on the different process stages of the textill industry. Ecotoxicol Environ Saf. 2001; 48(1):56‐61.

43. Dave G1, Aspegren P. Comparative study of leachates from 52 textiles to Daphnia magna. Ecotoxicol Environ Saf. 2010; 73(7):1629‐32.

44. Yan G, Chen D, Hua Z. Roles of H2O2 and OH radical in bactericidal, action of immobilized TiO2 thin_film reactor: An ESR study. J Photochem Photobiol A: Chem. 2009; 207(2‐ 3):153‐9.

45. Baveye P, Laba M. Aggregation and Toxicology of Titanium Dioxide Nanoparticles. Environ Health Perspect. 2008; 116(4): A152.  

46. Heinlaan M, Ivask A, Blinova I, Dubourguier HC, Kahru A. Toxicity of nanosized and bulk ZnO, CuO and TiO2 to bacteria Vibrio fischeri and crustaceans Daphnia magna and Thamnocephalus platyurus. Chemosphere. 2008; 71(7): 1308‐16.

47. Dehghani MH, Nasseri S, Mahdavi P, Mahvi AH, Naddafi K, Jahed GR. Evaluation of Acid 4092 Dye Solution Toxicity After UV/ZnO Mediated Nanophotocatalysis Process Using Daphnia Magna Bioassay (Persian). J Color Sci Tech. 2012; 5(4):285‐92.