روش‌های حذف فلزات سنگین از محیط آب و فاضلاب: یک مطالعه مروری

نوع مقاله: مقالات مروری روایی و یکپارچه

نویسندگان

1 مهندسی شیمی-دانشکده فنی و مهندسی- دانشگاه محقق اردبیلی- اردبیل- ایران

2 مهندسی شیمی- دانشکده فنی و مهندسی- دانشگاه محقق اردبیلی- اردبیل- ایران

10.22038/jreh.2020.46594.1352

چکیده

زمینه و هدف: فلزات سنگین یکی از آلاینده‌های پایداری هستند که در طبیعت تجزیه نمی‌شوند و می‌توانند همراه پساب یا فاضلاب صنایع مختلف به محیط‌زیست وارد شوند. معمولا این فلزات به مقدار کمی بـرای عملکرد طبیعی بدن مورد نیاز هستند؛ اما ورود بیش از حد مجاز آن‌ها به بدن، مسمومیت ایجاد خواهد کرد. هدف این تحقیق نیز، مروری است بر روش‌های مختلف حذف فلزات سنگین که در قالب روش‌های فیزیکی، شیمیایی و بیولوژیکی ارائه شده است.
مواد و روش‌ها: در مقاله حاضر، پس از جست‌و‌جوی مقالات مرتبط منتشر شده در سال‌های 2014 تا 2019 در بانک‌های اطلاعاتی مانند Springer، Science direct، Scopus، Freepaper و John Wiley مراجع حاضر در متن جهت به‌دست‌آوردن آخرین یافته‌ها در زمینه‌ی روش‌های حذف فلزات سنگین انتخاب و مورد بررسی قرار گرفت.
یافته‌ها: مطالعات نشان مى‌دهد فلزات سنگین مى‌توانند سلامتی انسان‌ها را تحت تأثیر قرار دهند، به همین دلیل حذف فلزات سنگین امری ضروری می‌باشد و روش‌های مختلفی برای حذف فلزات سنگین در قالب روش‌های فیزیکی، شیمیایی و بیولوژیکی از قبیل روش‌های غشایی، ته‌نشینی شیمیایی، تصفیه الکتروشیمیایی، تبادل یونی، جذب سطحی و زیست‌پالایی مورد استفاده قرار می‌گیرد.
نتیجه‌گیری: نتایج مطالعات نشان داد، فلزات سنگین اثرات مخربی بر جای می‌گذارند و حذف و تصفیه این فلزات از آب و خاک ضرورت دارد. ارائه مزایا و معایب روش‌های حذف فلزات سنگین، امکان انتخاب روش مناسب از نظر هزینه و دسترسی به دانش فنی را، به‌سادگی امکان‌پذیر می‌کند.

کلیدواژه‌ها


عنوان مقاله [English]

Methods for removing heavy metals from water and wastewater: A review study

نویسنده [English]

  • Gity Behboody 2
2 Chemical Engineering- Faculty of Engineering- University of Mohaghegh Ardabili- Ardabil- Iran
چکیده [English]

Background and purpose: Heavy metals are one of the stable pollutants that do not decompose in nature and can import into the environment by sewage or wastewater of various industries. Usually, small quantities of these metals are required for the normal function of the body. But the excessive entrance of them into the body will cause poisoning. The purpose of this research is a review of various methods for the removal of heavy metals in the form of physical, chemical, and biological methods.
Materials and Methods: In this paper, after searching related articles in the period 2014-2019 in databases such as Springer،Science direct، Scopus، Free paper, and John Wiley, presented references in this text were investigated to, obtain the latest finding on heavy metals removal methods.
Results: Studies show that heavy metals can affect human health, so the removal of heavy metals is essential and various methods for the removal of heavy metals in the form of physical, chemical, and biological methods including membrane methods, chemical precipitation, electrochemical purification, ion exchange, adsorption, and bioremediation are used.
Conclusion: The results of studies showed that heavy metals have destructive effects and it is necessary to remove and purify these metals from water and soil. The advantages and disadvantages of heavy metal removal methods make it easy to choose the right method in terms of cost and access to technical knowledge.

کلیدواژه‌ها [English]

  • Heavy metal removal
  • Electrochemical treatment
  • Bioremediation
  • Chemical precipitation
  • photocatalytic method
1. Fan M, Li T, Hu J, et al. Artificial neural network modeling and genetic algorithm optimization for cadmium removal from aqueous solutions by reduced graphene oxide-supported nanoscale zero-valent iron (nZVI/rGO) composites. Materials. 2017;10(5): 544.
2. Bhattacharya PT, Misra SR, Hussain M. Nutritional aspects of essential trace elements in oral health and disease: an extensive review. Scientifica. 2016;2016.
3. Singh Sankhla M, Kumari M, Nandan M, et al. Heavy metal contamination in soil and their toxic effect on human health: A review study. International Journal of All Research Education and Scientific Methods(IJARESM). 2016;4(10): 13-19.
4. Shayesteh K, Salehzadeh J, Kouhi B. Investigation of hot spring mineral water and effluent output effects on the acceptor river quality especially drinking water and present of strategy (Case study: Isti Su hot spring), Research Project approved by Iran Water Resource Management Company. 2018.
5. Tadesse M, Tsegaye D, Girma G. Assessment of the level of some physico-chemical parameters and heavy metals of Rebu river in oromia region, Ethiopia. MOJ Biology and Medicine. 2018;3(4): 99-118.
6. Fomina M, Gadd GM. Biosorption: current perspectives on concept, definition and application. Bioresource technology. 2014;160: 3-14.
7. Jan AT, Azam M, Siddiqui K, et al. Heavy metals and human health: mechanistic insight into toxicity and counter defense system of antioxidants. International journal of molecular sciences.  2015;16(12): 29592-29630.
8. Matta G, Gjyli L. Mercury, lead and arsenic: impact on environment and human health. Journal of Chemical and Pharmaceutical Sciences. 2016;9(2): 718-725.
9. Water USEPA. Edition of the Drinking Water Standards and Health Advisories Tables: United States Environmental Protection Agency, Office of Water. 2018.
10. Abdul KS, Jayasinghe SS, Chandana EP, et al. Arsenic and human health effects: A review. Environmental Toxicology and Pharmacology. 2015;40(3): 828-846.
11. Nordberg GF, Bernard A, Diamond GL, et al. Risk assessment of effects of cadmium on human health (IUPAC Technical Report). Pure and Applied Chemistry. 2018;90(4): 755-808.
12. Achmad RT, Ibrahim E. Effects of chromium on human body. Annual Research and Review in Biology. 2017;13(2): 1-8.
13. Bost M, Houdart S, Oberli M, et al. Dietary copper and human health: Current evidence and unresolved issues. Journal of Trace Elements in Medicine and Biology. 2016;35: 107-115.
14. Ha E, Basu N, Bose-O’Reilly S, et al. Current progress on understanding the impact of mercury on human health. Environmental Research. 2017;152: 419-433.
15. Latif Wani AB, Ara A, Usmani JA. Lead toxicity: A review. Interdisciplinary Toxicology. 2015;8(2): 55-64.
16. Gunatilake SK. Methods of removing heavy metals from industrial wastewater. Journal of Multidisciplinary Engineering Science Studies. 2015;1(1): 12-18.
17. El-Ghaffar MA, Tieama HA. A review of membranes classifications, configurations, surface modifications, characteristics and Its applications in water purification. Chemical and Biomolecular Engineering. 2017;2(2): 57-82.
18. Ghosh P, Rana SS, Shaci Kumar C, et al. Membrane filtration of fruit juice-an emerging   technology. International Journal of Food Sciences and Nutritional Sciences. 2015;4(4): 47-57.
19. Park HG, Kwon YN. Long-term stability of low-pressure reverse osmosis (RO) membrane operation—A pilot scale study. Water. 2018;10(2): 93.
20. Nath K. Membrane separation processes. 2th ed. PHI Learning Pvt. Ltd. 2017.
21. Charcosset C. Ultrafiltration, microfiltration, nanofiltration and reverse osmosis in integrated membrane processes. In: Basile A, Charcosset C. Integrated membrane systems and processes. 1th ed. John Wiley & Sons, Ltd. 2016;1-22.
22. Chakraborty S, Rusli H, Nath A, et al. Immobilized biocatalytic process development and potential application in membrane separation: a review. Critical reviews in biotechnology. 2016;36(1): 43-58.
23. Beyer F, Laurinonyte J, Zwijnenburg A, et al. Membrane fouling and chemical cleaning in three full-scale reverse osmosis plants producing demineralized water. Journal of Engineering. 2017;2017.
24. Biron DD, Dos Santos V, Zeni M. Ceramic membranes applied in separation processes (Topics in mining, metallurgy and materials engineering). 1th ed. Springer. 2017.
25. Dahman Y. Nanotechnology and functional materials for engineers. 1th ed. Elsevier. 2017.
26. Tsavdaris A. An evaluation of vegetated SuDS ponds using experimental and numerical methods. [Doctorat thesis]. England. School of civil engineering and surveying of University of Portsmouth. 2015.
27. Fornari W, Picano F, Brandt L. Sedimentation of finite-size spheres in quiescent and turbulent environments. Journal of Fluid Mechanics. 2016;788: 640-669.
28. Abdollahpour M. Investigation of removal of bromide ion of drinking water by inorganic polymer coagulant. [Thesis M. Sc.]. Iran. School of chemical engineering of University of Mohaghegh Ardabili. 2014 .(Persian)
29. Abdollahpour M, Shayesteh K. Application of response surface methodology (RSM) for modeling and optimizing coagulation process for the removal of bromide ions. Journal of Water and Wastewater. 2016; 27(5):  64-72.
30. Shayesteh K, Kouhi B, Deilam salehi M. Study of Control of natural pollutants in the Nir hot springs and economic exploitation of pollutants, Reseach Project approved by Iran water resource management company. 2019.
31. Azimi A, Azari A, Rezakazemi M, et al. Removal of heavy metals from industrial wastewaters: a review. ChemBioEng Reviews. 2017;4(1): 37-59.
32. Najib T, Solgi M, Farazmand A, et al. Optimization of sulfate removal by sulfate reducing bacteria using response surface methodology and heavy metal removal in a sulfidogenic UASB reactor. Journal of Environmental Chemical Engineering. 2017;5(4): 3256-3265.
33. Sánchez-Andrea I, Sanz JL, Bijmans MF, et al. Sulfate reduction at low pH to remediate acid mine drainage. Journal of Hazardous Materials. 2014; 269: 98-109.
34. Voutchkov N. Fundamentals of clarifier performance monitoring and control. A SubCam online continuing education course. 2017;41.
35. Chakravarty R, Chakraborty S, Khan MS, et al. An electrochemical approach for removal of radionuclidic contaminants of Eu from 153Sm for effective use in metastatic bone pain palliation. Nuclear medicine and biology. 2018;58: 8-19.
36. Hakizimana JN, Gourich B, Chafi M, et al. Electrocoagulation process in water treatment: A review of electrocoagulation modeling approaches. Desalination. 2017;404: 1-21.
37. Mota IdOd, Castro JAd, Casqueira RdG, et al. Study of electroflotation method for treatment of wastewater from washing soil contaminated by heavy metals. Journal of Materials Research and Technology. 2015;4(2): 109-113.
38. Zangari G. Electrodeposition of alloys and compounds in the era of microelectronics and energy conversion technology. Coatings. 2015;5(2): 195-218.
39. Mirji G, Kalburgi P.B. Application of electrocoagulation mechanism for COD removal of dairy wastewater. International Journal of Mechanical and Production Engineering. 2015;3(11): 86-88
40. Tien TT, Linh DH, Vu LT, et al. Electrochemical Water Treatment Technology in Viet Nam: Achievement & Future Development. Science Journal of Chemistry. 2017;5(6): 87.
41. Sun Z, Liu Z, Hu X, editiors. Mechanism of electro-coagulation with Al/Fe periodically reversing treating berberine pharmaceutical wastewater. IOP Conference Series: Earth and Environmental Science. 2017;63(1): 012026.
42. Yunnen C, Xiaoyan L, Changshi X, et al. The mechanism of ion exchange and adsorption coexist on medium–low concentration ammonium–nitrogen removal by ion-exchange resin. Environmental Technology. 2015;36(18): 2349-2356.
43. Crini G, Lichtfouse E. Advantages and disadvantages of techniques used for wastewater treatment. Environmental Chemistry Letters. 2019;17(1): 145-155.
44. Vorotyntsev AV, Petukhov AN, Makarov DA, et al. Synthesis, properties and mechanism of the ion exchange resins based on 2-methyl-5-vinylpyridine and divinylbenzene in the catalytic disproportionation of trichlorosilane. Applied Catalysis B: Environmental. 2018;224: 621-633.
45. Marczewski AW, Seczkowska M, Deryło-Marczewska A, et al. Adsorption equilibrium and kinetics of selected phenoxyacid pesticides on activated carbon: effect of temperature. Adsorption. 2016;22(4-6): 777-790.
46. DeylamSalehi M. Synthesis of Iron nanoparticles based on granolar activated Carbon and its effects on the removal of Arsenic species in aqueous solution. [Thesis M.Sc.]. Iran. School of chemical engineering of University of Mohaghegh Ardabili. 2014 .(Persian)
47. DeilamSalehi M, Shayesteh K. Synthesis of novel adsorbent, nano zero valent iron based on granular activated carbon by pomegranate leaf extract for arsenate removal aqueous solutions. National Congress on Chemistry and Nano-Chemistry, From research to national development,Tehran University. 2017;10-18.
48. Turabik M, Simsek UB. Effect of synthesis parameters on the particle size of the zero valent iron particles. Inorganic and Nano-Metal Chemistry. 2017;47(7): 1033-1043.
49. Lim AP, Aris AZ. A review on economically adsorbents on heavy metals removal in water and wastewater. Reviews in Environmental Science and Bio/Technology. 2014;13(2): 163-181.
50. Gaur N, Kukreja A, Yadav M, et al. Adsorptive removal of lead and arsenic from aqueous solution using soya bean as a novel biosorbent: equilibrium isotherm and thermal stability studies. Applied Water Science. 2018;8(4): 98.
51. Rahel C, Bhatnagar M. Adsorption of heavy metals and phenol from aqueous solution onto fly ash as low cost adsorbent: A review. International Journal of Innovative Research in Science, Engineering and Technology. 2017;6(2): 2479-2497.
52. Delvigne F, Takors R, Mudde R, et al. Bioprocess scale‐up/down as integrative enabling technology: from fluid mechanics to systems biology and beyond. Microbial biotechnology. 2017;10(5): 1267-1274.
53. Tanzadeh J, Shareghifar M, Panahandeh M. The use of microorganisms in bioremediation of heavy methals in soils.  Journal of Environmetal Research and Technology. 2016;1(1): 1-6. (Persion)
54. Eslami A, Nemati R. Removal of heavy metal from aqueous environments using bioremediation technology–review. Journal of Health in the Field 2015;3(2(: 43-51. (Persion)
55. Cristaldi A, Conti GO, Jho EH, et al. Phytoremediation of contaminated soils by heavy metals and PAHs. A brief review. Environmental Technology & Innovation. 2017;8: 309-326.
56. Hasan M, Uddin M, Ara-Sharmeen I, et al. Assisting Phytoremediation of Heavy Metals Using Chemical Amendments. Plants. 2019;8(9): 295.
57. Muthusaravanan S, Sivarajasekar N, Vivek JS, et al. Phytoremediation of heavy metals: mechanisms, methods and enhancements. Environmental Chemistry Letters .2018:16(4): 1339-1359.
58. Gnansounou E, Alves CM, Raman JK. Multiple applications of vetiver grass–a review. International Journal of  Environmental Science 2017;2: 125-141.
59. Deng THB, Ent A, Tang YT, et al. Nickel hyperaccumulation mechanisms: a review on the current state of knowledge. Plant Soil. 2018;423(1-2): 1-11.
60. Campos FV, Oliveira JA, Silva AA, et al. Phytoremediation of arsenite-contaminated environments: is Pistia stratiotes L. a useful tool?. Ecological Indicators. 2019;104: 794-801.
61. Gurushantha K, Anantharaju K, Nagabhushana H, et al. Facile green fabrication of iron-doped cubic ZrO2 nanoparticles by Phyllanthus acidus: structural, photocatalytic and photoluminescent properties. Journal of Molecular Catalysis A: Chemical. 2015;397: 36-47.
62. Rojas-Cervantes ML, Castillejos E. Perovskites as catalysts in advanced oxidation processes for wastewater treatment. Catalysts. 2019;9(3): 230.
63. Saravanan R, Gracia F, Stephen A. Basic principles, mechanism, and challenges of photocatalysis. In:Khan MM, Pradhan D, Sohn Y. Nanocomposites for Visible Light-induced Photocatalysis: Springer, Cham. 2017;19-40.
64. Regmi C, Joshi B, Ray SK, et al. Understanding mechanism of photocatalytic microbial decontamination of environmental wastewater. frontiers in Chemistry. 2018;6: 33.
65. Ge J, Zhang Y, Heo YJ, et al. Advanced design and synthesis of composite photocatalysts for the remediation of wastewater: A review. Catalysts. 2019;9(2): 122.