مقایسه روش دراستیک استاندارد و مدل‌های ناپارامتریک یادگیری بر پایه نمونه با پارامتر K (IBK) و درخت تصمیم M5 در مکان‌یابی پتانسیل آلودگی آب‌های زیرزمینی (مطالعه موردی: دشت آستانه- کوچصفهان)

نوع مقاله: مقالات پژوهشی

نویسندگان

1 گروه علوم و مهندسی آب، دانشکده کشاورزی، دانشگاه بیرجند، بیرجند، ایران

2 دانشیار، گروه علوم و مهندسی آب، دانشگاه بیرجند، بیرجند، ایران،

3 دانشیار گروه علوم و مهندسی آب، دانشکده کشاورزی، دانشگاه بیرجند، بیرجند، ایران

چکیده

زمینه و هدف: با توجه به نیاز روزافزون جوامع بشری به منابع آب زیرزمینی، حفاظت و جلوگیری از آلودگی این منابع امری ضروری تلقی می‌گردد. مطالعه حاضر با هدف ارزیابی آسیب‌پذیری آبخوان آب زیرزمینی آبخوان دشت آستانه- کوچصفهان استان گیلان، با استفاده از روش دراستیک و مدل‌های ناپارامتریک انجام شد.
مواد و روش‌ها:در این پژوهش، پارامترها به صورت 7 لایه در محیط نرم‌افزار سیستم اطلاعات جغرافیایی (GIS) برای دشت تهیه و پس از وزن‌دهی و ترکیب رتبه‌های استاندارد، نقشه آسیب‌پذیری آب‌های زیرزمینی دشت با استفاده از روش دراستیک تعیین گردید. برای صحت‌سنجی مدل، از داده‌های نیترات در منطقه استفاده شد. سپس با کمک مدل‌های ناپارامتریک یادگیری بر پایه نمونه با پارامتر K و درخت تصمیم M5 مقدار نیترات تخمین زده شد. همچنین آزمون گاما برای یافتن بهترین ترکیب پارامترهای ورودی اجرا گردید.  
یافتهها: بر اساس نتایج این پژوهش، آسیب‎پذیری آبخوان دشت کوچصفهان در 56/18% دارای آسیب‌پذیری اندک، 29/51% دارای آسیب‎پذیری اندک تا متوسط، 46/28% دارای آسیب‎پذیری متوسط تا زیاد و 67/1% دارای آسیب‎پذیری زیاد می‎باشد. همچنین هر دو مدل ناپارامتریک به‌کار گرفته شده تخمین مناسبی از مقدار نیترات می‎دهند، اما مدل M5 بهترین نتایج را دربرداشت (98/0=R2).
نتیجهگیری:مدل‌های ناپارامتریک، روشی کارا در تخمین آسیب‌پذیری آبخوان محسوب می‌شوند و نتایج دقیقی از برآورد پتانسیل آلودگی در منطقه می‌دهند. این نکته برتری مدل M5 نسبت به سایر روش‌های مورد بررسی در آسیب‌پذیری آبخوان را نشان می‌دهد.
نوع مقاله: پژوهشی

کلیدواژه‌ها


عنوان مقاله [English]

Comparison of Standard Drastic and Nonparametric Models Instance-Based Learning with parameter K (IBK) and the Tree Decision M5 in Determination of Groundwater Pollution Potential (Case study: Kuchesfahan- Astane plain)

نویسندگان [English]

  • Samira Rahnama 1
  • Hossein Khozeymehnezhad 2
  • Abbas KhasheiSiuki 3
1 Water Engineering Department, College of Agriculture, University of Birjand, Birjand, Iran.
2 Associate professor, Department of Water Engineering, Faculty of Agriculture, University of Birjand, Birjand, Iran.
3 Associate professor, Water Engineering Department, College of Agriculture, University of Birjand, Birjand, Iran
چکیده [English]

Background and Aim:Due to the increasing demands of the human population to groundwater, protection and prevention of these water resources from pollution are necessary. The purpose of this study was to evaluate the vulnerability of groundwater aquifer in Kuchesfahan- Astane plain located in Gilan province using DRASTIC method and nonparametric models.
Materials and Methods:In this study, seven layers were prepared for parameters in GIS software, and after weighting and combining standard ranks, the groundwater vulnerability maps for the study area were prepared. Nitrate data were used to validate the model in this region. Subsequently, by using the nonparametric models, Instance-Based Learning with parameter K (IBK) and the Tree Decision M5, the amount of nitrate was estimated. Meanwhile, Gamma test was conducted to find the best combination of input parameters.
ResultsThe results revealed that the vulnerability of groundwater aquifer in this plain has 4 classes including 18.56 % in low vulnerability, 51.29 % in low to medium vulnerability, 28.46% in medium to high vulnerability, and 1.67% in high vulnerability classes. Also, the results showed that both of the nonparametric models have suitable estimates of the nitrate content, but the M5 decision tree model yielded the best results (R2=0.98).
Conclusion:The results showed that nonparametric models are efficient method to estimate the aquifer vulnerability and provide accurate results to estimate the potential of contamination in the study area.This demonstrates the superiority of the M5 model over other aquatic vulnerability assessment methods.

کلیدواژه‌ها [English]

  • Decision tree
  • Geographic Information System
  • Groundwater
  • Population
1. Vrba J, Zoporozec A. Guidebook on mapping groundwater vulnerability. IAH International Contribution for Hydrogeology 1994; Vol. 16: xxiii, 131 p.

2. Almasri M.N. Assessment of intrinsic vulnerability to contamination for Gaza coastal aquifer, Palestine. Journal of Environmental Management 2008; 88, 577–593.

3. Gogu R.C, Dassargues A. Current trends and future challenge in groundwater vulnerability assessment, using overlay and index methods. Journal of Environmental Geology 2000; 39, 549-558.

4. Ersoy A.F, Gultekin F. DRASTIC- Based Methodology for Assessing Groundwater Vulnerability in the Gumushacikoy and Merzifon Basin (Amasya, Turkey), Earth Sci. Res. S.J.J 2013; 17:1, 33-40.

5. Jafari S.M, Nikoo M.R. Groundwater risk assessment based on optimization framework using DRASTIC method. Arab J Geosci 2016; 9,742

6. Kholghi M, Taki R. Evaluating Groundwater vulnerability in Ghazvin Plain. Journal of Engineering Geology 2004; 1(3), 255-270 (Persian).

7. Amirahmadi, A., Ebrahimi, M., Asadi, M.A. and Akbari, E. (2013). Evaluation of the vulnerability of Neishabour aquifer by DRASTIC method using GIS. Geography and Enviromental Hazardas, 2(6), 37-56 (In Persian).

8. Sadatipoor E, Noori R, Baghvand A, et al. Application of DRASTIC Model for Groundwater Vulnerability Assessment of the Ghaen Aquifer. Journal Enviromental Sciences Studies 2016; 1(2), 63-71 (Persian).

9. Yoosefdoost I, Khashei Siuki A. Determine the Vulnerability of the Aquifer Using the Standard Drastic and Data-Based Methods (Case Study: Kochisfahn). Journal of Remote Sensing & GIS 2017; 9(2), 99-116 (Persian).

10. Khalili Naft Chali A, Shahidi A, Khashei Siuki A. Comparison of Lazy Algorithms and M5 Model to Estimate Groundwater Level (Case Study: Plain Neyshabur). J. Water and Soil Sci (Sci. & Technol. Agric. & Natur. Resour.) 2017; 21(3), 15-26 (Persian).

11. Sadeghzadeh Sadat M, Nazemi A.H, Sadraddini A.A. Impacts of Surface Water Quality on Groundwater Quality (Case study: Tabriz plain). Water and Soil Science 2017; 27(3), 225-237  (Persian).

12. Gesim N.A, Okazaki T. (2018). Assessment of Groundwater Vulnerability to Pollution using DRASTIC Model and Fuzzy Logic in Herat City, Afghanistan. nternational Journal of Advanced Computer Science and Applications 2018; 9(10), 181-188.

13. Hosseini M, Saremi A. Assessment and Estimating Groundwater Vulnerability to Pollution Using a Modified DRASTIC and GODS Models (Case Study: Malayer Plain of Iran), Civil Engineering Journal 2018; 4(2), 433-442.

14. Ghanbarian M, Ahmadi Nadoushan M. Determinaton of Aquifer Vulnerability in Lordegan Aquifer Using DRASTIC, AVI and GODS Models, Journal of Research in Environmental Health 2019; 4(4): 257-271.

15. Arezooman omidi langrudi M, Khashei Siuki A, Javadi S, et. Groundwater Vulnerability Assessment by the use of Drastic-Nw Modified Model (Case study: Kuchesfehan-Astane Plain). Iranian Journal of Irrigation and Drainage 2015, 1(9), 75-82 (Persian).

16. Babiker I.S, Mohamed M.A.A, Hiyama T, et al. A GIS-based DRASTIC Model for Assessing Aquifer Vulnerability in Kakamigahara Heights, Gifu Prefecture, Central Japan, Science of the Total Environment 2005; 345(1-3), 127-140.

17. Thirumalaivasan D, Karmegam M,  Venugopal K. AHP- DRASTIC: software for specific aquifer vulnerability assessment using DRASTIC model and GIS. Environmental Modeling and Software 2001; 18, 645-656.

18. Aller L, Bennet T, Leh R.J.H, et al. DRASTIC: A Standardized System for Evaluating Ground Water Pollution Potential Using Hydrogeologic Settings, EPA/600/2-87/035, U.S. Environmental Protection Agency, Ada, Oklahoma, 1987; PP: 19-25.

19. Arezooman omidi langrudi M, Khashei Siuki A, Javadi S, et al. Evaluation of vulnerability of aquifers by improved fuzzy drastic method: Case study: Aastane Kochesfahan plain in Iran. Ain Shams Engineering Journal 2016; 7, 11-20.

20. Pal M. M5 model tree for land cover classification. International Journal of Remote Sensing 2006; 27(4),825- 831.

21. Talebi A, Akbari Z. Investigation of Ability of Decision Trees Model to Estimate River Suspended Sediment (Case Study: Ilam Dam Basin). Journal of Water and Soil Science (Journal of Science and Technology of Agriculture and Natural Resources) 2013; 17(63),109-121 (Persian).

22. Yousefi M, Talebi A.S, Pourshriati R. Application of Artificial Intelligence in Water and Soil Science. Yazd University Press, 2014 (Persian).

23. Alberg D, Las T.M, Kandel A. Knowledge discovery in data streams with regression tree methods. WIREs Data Mining Know Discover 2012; 2: 69-78.

24. Aha D.W, Kibler D, Albert M.K. Instance-based learning algorithms. Machine learning 1991; 6:37-66.

25. Shirzad A, Soltani F, Zare Abyaneh H. Simulation of scouring in accordance with energy-depleting structures using k-nearest closest neighbor (KNN) algorithm and non-fuzzy adaptive inference system (ANFIS). First International Water Crisis Summit. University of Zabol, 2008, (Persian).

26. Jalali V.R, Homaee M.  Introducing a Nonparametric Model Using k-Nearest Neighbor Technique for Predicting Soil Bulk Density. Journal of Water and Soil Science (Journal of Science and Technology of Agriculture and Natural Resources) 2011; 15 (56), 181-191(Persian).

27. Moghaddamnia A., Remesan R., Hassanpour Kashani M., Mohammadi M., Han D and Piri J. Comparison of LLR, MLP, Elman, NNARX and ANFIS Models with a case study in solar radiation estimation. Journal of Atmospheric and Solar-Terrestrial Physics.2009, 71: 975-982.

28. Khashei Siuki A, Sabazi M. Evaluation os ANFIA, ANN, and geostatistical models to spatial distributaion of groundwater quality (case study: Mashhad in Iran). Arabian Journal of Geosciences 2015; 8(2), 903-912.

29. Modaberi H, RahbarHashemi M.M, Ashurnia M. Groundwater Resource Vulnerability Analysis Using Drastic Method and Comparison with Nitrate Parameter in Guilan. Third National Conference on Environmental Science and Management, 2017, Ardebil (Persian).