بررسی کارایی پودر و خاکستر پسماند‌های گلاب‌گیری به عنوان جاذب طبیعی در حذف رنگ راکتیو آبی 29 از محیط‌های آبی

نوع مقاله: مقالات پژوهشی

نویسندگان

1 دانشیار، گروه مهندسی بهداشت محیط، دانشکده بهداشت، دانشگاه علوم پزشکی ایران، تهران، ایران.

2 استاد، گروه مهندسی بهداشت محیط، دانشکده بهداشت، دانشگاه علوم پزشکی ایران، تهران، ایران.

3 کارشناس ارشد، گروه مهندسی محیط زیست، دانشگاه آزاد اسلامی واحد تهران غرب، تهران، ایران.

4 کارشناسی ارشد مهندسی بهداشت محیط، دانشکده بهداشت، دانشگاه علوم پزشکی ایران، تهران، ایران.

چکیده

زمینه و هدف:یکی از مهم‌ترین آلاینده­ های زیست محیطی، ترکیبات رنگی هستند که به‌طور کلی در صنایع نساجی، کاغذسازی، لوازم آرایشی، غذا و چرم به‌کار می­روند و تخلیه آنها به فاضلاب، اثرات زیان‌باری را به محیط زیست وارد می­کند. مطالعه حاضر با هدف تعیین کارایی خاکستر و پودر پسماند­های گلاب‌گیری در حذف رنگ راکتیو آبی 29 از محلول‌های آبی انجام گرفت.
مواد و روش‌ها: در این مطالعه تجربی، بعد از تهیه جاذب پودر و خاکستر پسماند گلاب‌گیری، اثر پارامترهای مختلف بهره‌برداری از قبیل (pH (10-3، غلظت اولیه رنگ (25، 50، 100 و mg/L 300)، زمان تماس (180-5 دقیقه) و دوز جاذب (g/L6 -0/5) مورد مطالعه قرار گرفت. در نهایت نتایج توسط مدل­های سینتیک و ایزوترم تحلیل گردید.
یافته‌ها: در این پژوهش زمان تعادل پودر و خاکستر پسماند گلاب‌گیری به ترتیب 60 و min 45به‌دست آمد. حداکثر کارایی جاذب پودر و خاکستر به ترتیب معادل 74 و 91 درصد، در pH معادل 3، زمان تماس تعادلی و دوز جاذب g/L 4 حاصل شد. مطالعات ایزوترم برای هر دو جاذب با مدل فروندلیخ مطابق بودند. معادلات سینتیکی نیز از مدل شبه درجه دوم بهتر پیروی می‌‌کردند.
نتیجه‌گیری: پودر و خاکستر پسماندهای گلاب‌گیری می­توانند به عنوان یک جاذب مؤثر، در دسترس و ارزان قیمت در حذف آلاینده­های رنگی از محیط‌های آبی مورد استفاده قرار گیرند. 

کلیدواژه‌ها


عنوان مقاله [English]

Investigation of Efficiency of Ash and Powder Rosa Damascena Wastes As a natural absorbent In Removal Of Reactive Blue 29 From aqueous solutions

نویسندگان [English]

  • Majid Kermani 1
  • Roshanak rezaei 2
  • hossein Salehi 3
  • sevda fallah jokandan 4
1 Assosiate Professor of Environmental Health Engineering Department, School of Public Health, Iran University of Medical Sciences
2 Professor, Department of Environmental Engineering, School of Public Health, Iran University of Medical Health, Tehran, Iran.
3 MS.C, Department of Environmental Engineering, Islamic Azad University West Tehran Branch, Tehran. Iran.
4 M.SC. Department of Environmental Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran.
چکیده [English]

Background: One of the most important environmental pollutants is color Compounds that are generally used in the textile, paper, cosmetics, food and leather industries, and their discharge into wastewater has harmful effects on the environment. The aim of this study is determination of efficiency of ash and powder Rosa Damascena Wastes in removal of Reactive Blue from aqueous solutions.
Methods:In this experimental study, after the preparing of powder and ash Rosa Damascena Wastes absorbent, the effect of various parameters of operation such as pH (3-10), the initial concentration of dye (25, 50, 100 and 300 mg/L), contact time (5-180 minutes) and absorbent dose (0.5- 6 g/L) were studied. Finally the results were analyzed by kinetics and isotherm modeling.
Results: In this study, equilibrium time of powder and ash Rosa Damascena Wastes Obtained 60 and 45 minutes respectively. The Maximum efficiency of absorbent powder and ash was obtained 74 and 91 percent, respectively, at pH 3, contact time of equilibrium and absorbent dosage 4 g/L. isotherm studies matched with Freundlich isotherm models for both absorbents. Kinetic equations followed the pseudo-second of the model better.
Conclusion: The results showed that Powder and ash of Rosa Damascena Wastes can be used as an effective, available and affordable absorbent for removal of color pollutants from aqueous solutions. 

کلیدواژه‌ها [English]

  • adsorption
  • Rosa Damascena Waste
  • Reactive Blue 29
  • kinetics
  • isotherms
1.         Cengiz S, Tanrikulu F, Aksu S. An alternative source of adsorbent for the removal of dyes from textile waters: Posidonia oceanica (L.). Chemical Engineering Journal. 2012;189:32-40.

2.         Santhi T, Manonmani S, Vasantha V, Chang Y. A new alternative adsorbent for the removal of cationic dyes from aqueous solution. Arabian journal of chemistry. 2016;9:S466-S74.

3.         Gök Ö, Özcan AS, Özcan A. Adsorption behavior of a textile dye of Reactive Blue 19 from aqueous solutions onto modified bentonite. Applied Surface Science. 2010;256(17):5439-43.

4.         Barka N, Assabbane A, Nounah A, Laanab L, Ichou YA. Removal of textile dyes from aqueous solutions by natural phosphate as a new adsorbent. Desalination. 2009;235(1):264-75.

5.         Osma JF, Saravia V, Toca-Herrera JL, Couto SR. Sunflower seed shells: A novel and effective low-cost adsorbent for the removal of the diazo dye Reactive Black 5 from aqueous solutions. Journal of Hazardous Materials. 2007;147(3):900-5.

6.          Shirzad-Siboni M, Fallah S, Tajasosi S. Removal of Acid Red 18 and Reactive Black 5 Dyes from Aquatic Solution by Using of Adsorption on Azollafiliculoides: a Kinetic Study. Journal of Guilan University of Medical Sciences. 2014;22(88):42-50.

7.         Daneshvar N, Salari D, Khataee A. Photocatalytic degradation of azo dye acid red 14 in water: investigation of the effect of operational parameters. Journal of Photochemistry and Photobiology A: Chemistry. 2003;157(1):111-6.

8.         Golka K, Kopps S, Myslak ZW. Carcinogenicity of azo colorants: influence of solubility and bioavailability. Toxicology letters. 2004;151(1):203-10.

9.         Mozia S, Tomaszewska M, Morawski AW. Removal of azo-dye Acid Red 18 in two hybrid membrane systems employing a photodegradation process. Desalination. 2006;198(1-3):183-90.

10.       Hoda N, Bayram E, Ayranci E. Kinetic and equilibrium studies on the removal of acid dyes from aqueous solutions by adsorption onto activated carbon cloth. Journal of hazardous materials. 2006;137(1):344-51.

11.       Lima EC, Royer B, Vaghetti JC, Simon NM, da Cunha BM, Pavan FA, et al. Application of Brazilian pine-fruit shell as a biosorbent to removal of reactive red 194 textile dye from aqueous solution: kinetics and equilibrium study. Journal of hazardous materials. 2008;155(3):536-50.

12.       Carneiro PA, Umbuzeiro GA, Oliveira DP, Zanoni MVB. Assessment of water contamination caused by a mutagenic textile effluent/dyehouse effluent bearing disperse dyes. Journal of Hazardous Materials. 2010;174(1):694-9.

13.       Rahmani Z, Kermani M, Gholami M, Jafari AJ, Mahmoodi NM. Effectiveness of photochemical and sonochemical processes in degradation of Basic Violet 16 (BV16) dye from aqueous solutions. Iranian journal of environmental health science & engineering. 2012;9(1):14.

14.       Hosseini S, Khan MA, Malekbala MR, Cheah W, Choong TS. Carbon coated monolith, a mesoporous material for the removal of methyl orange from aqueous phase: Adsorption and desorption studies. Chemical engineering journal. 2011;171(3):1124-31.

15.       El Nemr A, Abdelwahab O, El-Sikaily A, Khaled A. Removal of direct blue-86 from aqueous solution by new activated carbon developed from orange peel. Journal of hazardous materials. 2009;161(1):102-10.

16.        Gholizadeh A, Kermani M, Gholami M, Farzadkia M, Yaghmaeian K. Removal efficiency, adsorption kinetics and isotherms of phenolic compounds from aqueous solution using rice bran ash. Asian Journal of Chemistry. 2013;25(7):3871.

17.       Moussavi G, Mahmoudi M. Removal of azo and anthraquinone reactive dyes from industrial wastewaters using MgO nanoparticles. Journal of Hazardous Materials. 2009;168(2):806-12.

18.       Anbia M, Hariri SA. Removal of methylene blue from aqueous solution using nanoporous SBA-3. Desalination. 2010;261(1):61-6.

19.       Gholizadeh A, Kermani M, Gholami M, Farzadkia M. Comparative Investigation of 2-Chlorophenol and 4-Chrorophenol Removal using granulated activated carbon and rice husk ash. 2012.

20.       Kermani M, Gholami M, Gholizade A, Farzadkia M, Esrafili A. Effectiveness of rice husk ash in removal of phenolic compounds from aqueous solutions, equilibrium and kinetics studies. Iranian Journal of Health and Environment. 2012;5(1):107-20.

21.       Bina B, Kermani M, Movahedian H, Khazaei Z. Biosorption and Recovery of Copper and Zinc from Aqueous Solutions by Nonliving Biomass of Marine Brown Algae of Sargassum sp. 2006.

22.       Kyzas GZ, Lazaridis NK, Mitropoulos AC. Removal of dyes from aqueous solutions with untreated coffee residues as potential low-cost adsorbents: Equilibrium, reuse and thermodynamic approach. Chemical engineering journal. 2012;189:148-59.

23.       Kyzas GZ. Commercial coffee wastes as materials for adsorption of heavy metals from aqueous solutions. Materials. 2012;5(10):1826-40.

24.       Jenkins S. Standardized methods of water examination. Examination of water for pollution control, a reference handbook: edited by MJ Suess. Vol. 1 Sampling, data analysis and laboratory equipment, 360 pp. Vol. 2 Physical, chemical and radiological examination, 555 pp. Vol. 3 Biological, bacteriological and virological examination, 531 pp. published on behalf of the World Health Organization by Pergamon Press, Oxford, 1982.£ 175.00 or $350.00. Pergamon; 1983.

25.       Gholizadeh A, Rastegar A. Kinetic and equilibrium models for biosorption of Phenolic compounds on chemically modified seaweed, Cystoseira indica. Journal of North Khorasan University of Medical Sciences. 2013;4(4):683-93.

26.        Safa Y, Bhatti HN. Adsorptive removal of direct textile dyes by low cost agricultural waste: Application of factorial design analysis. Chemical Engineering Journal. 2011;167(1):35-41.

27.       Bazrafshan E, Ahmadabadi M, Mahvi AH. Reactive Red-120 removal by activated carbon obtained from cumin herb wastes. Fresenius Environ Bull. 2013;22(2a):584-90.

28.       Arıca MY, Bayramoğlu G. Biosorption of Reactive Red-120 dye from aqueous solution by native and modified fungus biomass preparations of Lentinus sajor-caju. Journal of hazardous materials. 2007;149(2):499-507.

29.       Celekli A, Yavuzatmaca M, Bozkurt H. Kinetic and equilibrium studies on the adsorption of reactive red 120 from aqueous solution on Spirogyra majuscula. Chemical Engineering Journal. 2009;152(1):139-45.

30.       Gulnaz O, Kaya A, Dincer S. The reuse of dried activated sludge for adsorption of reactive dye. Journal of Hazardous Materials. 2006;134(1):190-6.

31.       Ghanizadeh G, Asgari G. Removal of methylene blue dye from synthetic wastewater with bone char. Iranian Journal of Health and Environment. 2009;2(2):104-13.

32.       Amin NK. Removal of reactive dye from aqueous solutions by adsorption onto activated carbons prepared from sugarcane bagasse pith. Desalination. 2008;223(1):152-61.

33.       Bayramoglu G, Gursel I, Tunali Y, Arica MY. Biosorption of phenol and 2-chlorophenol by Funaliatrogii pellets. Bioresource technology. 2009;100(10):2685-91.

34.       Khaled A, El Nemr A, El-Sikaily A, Abdelwahab O. Removal of Direct N Blue-106 from artificial textile dye effluent using activated carbon from orange peel: Adsorption isotherm and kinetic studies. Journal of Hazardous Materials. 2009;165(1):100-10.

35.       Ghaneian M, Ehrampoush M, Rahimi S, Ghanizadeh G, Askarshahi M. Adsorption of Reactive Red 198 Dye on TiO2 Nano-particle from Synthetic Wastewater. 2011.

36.        Gulnaz O, Sahmurova A, Kama S. Removal of Reactive Red 198 from aqueous solution by Potamogeton crispus. Chemical Engineering Journal. 2011;174(2):579-85.

37.       Bazrafshan E, KM, F, Rezaie M. Survey Efficiency of Multi-Walled Carbon Nano Tubes For Removal of Reactive Red 198 From Aqueous Environments. Tolooebehdasht. 2014;12(4):215-30.

38.       Ghaneian M, Dehvari M, Jourabi Yazdi N, Mootab M, Jamshidi B. Evaluation of efficiency of Russian Knapweed flower powder in removal of Reactive Blue 19 from synthetic textile wastewater. Journal of Rafsanjan University of Medical Sciences. 2013;12(10):831-42.

39.       Bazrafshan E, Kord Mostafapour F. Evaluation of color removal of Methylene blue from aqueous solutions using plant stem ash of Persica. J of North Khorasan University of Medical Sciences. 2012;4:523-32.

40.       Gholizadeh A, Kermani M, Gholami M, Farzadkia M. Kinetic and isotherm studies of adsorption and biosorption processes in the removal of phenolic compounds from aqueous solutions: comparative study. Journal of Environmental Health Science and Engineering. 2013;11(1):1.