حذف آنتی‌بیوتیک سیپروفلوکساسین از محلول‌های آبی با روش ازناسیون

نوع مقاله: مقالات پژوهشی

نویسندگان

1 دانشیار، گروه بهداشت محیط، مرکز تحقیقات عوامل اجتماعی مؤثر بر سلامت، دانشکده بهداشت، دانشگاه علوم پزشکی مشهد، مشهد، ایران.

2 کارشناس ارشد، مهندسی بهداشت محیط، کمیته تحقیقات دانشجویی، دانشکده بهداشت، دانشگاه علوم پزشکی مشهد، مشهد، ایران.

3 دکترای بهداشت محیط، گروه بهداشت محیط، دانشکده بهداشت، دانشگاه علوم پزشکی تهران، تهران، ایران.

چکیده

زمینه و هدف: سیپروفلوکساسین، یکی از مهم‌ترین آنتی‌بیوتیک‌های سنتتیک و از گروه فلوروکوئینولون می‌باشد که کاربرد گسترده‌ای در پزشکی و دامپزشکی دارد. حضور اتم فلوئور در ترکیب آن باعث ایجاد ثبات و پایداری شده است. اخیراً از ازن برای تصفیه فاضلاب، کنترل بو و حذف ترکیبات آلی مقاوم استفاده می­شود. ازن از طریق اکسیداسیون مستقیم و یا مکانیسم واکنش‌های زنجیره‌ای که منجر به تولید رادیکال‌های هیدروکسیل آزاد می‌شود، عمل می­کند. مطالعه حاضر با هدف تعیین کارایی فرآیند ازناسیون در حذف آنتی‌بیوتیک سیپروفلوکساسین از محیط­ های آبی انجام شد.
مواد و روش‌ها:در این مطالعه تجربی ابتدا غلظت ازن تولیدی ژنراتور به روش یدومتریک تعیین گردید. پارامترهای مورد مطالعه در فرآیند شامل: سیپروفلوکساسین با غلظت 50-10 mg/L  تا 50، pH 3 تا 12، مدت زمان واکنش min 60 و میزان ازن برابر 1/4mg/L.min  در راکتور نیمه منقطع انجام شد. غلظت باقی‌مانده سیپروفلوکساسین در نمونه­ ها با استفاده از دستگاه HPLC سنجش شد.
یافته‌ها:در شرایط بهینه شامل pH برابر 12، میزان ازن 1/4mg/L.min  و غلظت اولیه آنتی‌بیوتیک برابر با 10mg/L ، فرآیند ازناسیون قادر بود 94/6 درصد از آنتی‌بیوتیک سیپروفلوکساسین را حذف نماید.
نتیجه‌گیری: ازناسیون می­تواند یک روش مؤثر در حذف آنتی‌بیوتیک سیپروفلوکساسین از محلول­های آبی باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Ciprofloxacin removal by Ozonation from aqueous solutions

نویسندگان [English]

  • Ali Asghar Najafpoor 1
  • omid nemati sani 2
  • hosein alidadi 1
  • aliakbar dehghan 3
  • Saeed Azarmi Moheb Seraj 2
1 Associate Professor, Department of Environmental Health Engineering, Social Determinants of Health Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
2 M.Sc. in Environmental Health Engineering, student research committee, Mashhad University of Medical Sciences, Mashhad, Iran.
3 PhD Student of Environment Health Engineering, School of Health, Mashhad University of Medical Sciences, Mashhad, Iran.
چکیده [English]

Introduction: Ciprofloxacin is one of the most important synthetic antibiotics from the fluoroquinolone group and is widely used in medicine and veterinary medicine. The presence of fluorine atom in its composition has made stability and Sustainability. Recently, ozone is used for wastewater treatment, odor control and removal of persistent organic compounds. Ozone acts through direct oxidation or the mechanisms of chain reactions that result in the release of hydroxyl radicals.
Goal: The aim of this study was to determine the efficiency of ciprofloxacin removal by ozonation process from aqueous solutions.
Material and methods: In this study, at first, concentrations of produced ozone of generator were determined by iodometric method. The studied parameters in the process includingciprofloxacin  concentrations of 10-50 mg/L, pH of 3-12, a reaction time of 60 min and an ozone concentration of 1.4 mg/lit.min was investigated in a semiconductor reactor. The remained concentrations of ciprofloxacin in the samples were measured by HPLC.
Results: In the optimal condition, at pH: 12, O3: 1.4 gr/lit.min, and initial antibiotic concentration of 10 mg/L, 94.6% of ciprofloxacin was removed.
Conclusion: The results showed that ozonation can be a suitable method for removal of ciprofloxacin antibiotic from aqueous solutions.

کلیدواژه‌ها [English]

  • " Advanced oxidation "
  • "ciprofloxacin"
  • "HPLC"
1.         Kang Za, Gholami M, Farzadkia M, Javadi Z, Moabedi I. Performance Evaluation Of Iran University Of Medical Sciences'hospital Wastewater Treatment Plants (Persian). Iran Occupational Health Journal 2010;6(4):8.

2.         Amouei A, Asgharnia H, Fallah H, Faraji H, Barari R, Naghipour D. Characteristics of Effluent Wastewater in Hospitals of Babol University of Medical Sciences, Babol, Iran. Health Scope. 2015;4(2).

3.         Verlicchi P, Galletti A, Masotti L. Management of hospital wastewaters: the case of the effluent of a large hospital situated in a small town. Water Science and Technology. 2010;61(10):2507-19.

4.         Andreozzi R, Canterino M, Marotta R, Paxeus N. Antibiotic removal from wastewaters: the ozonation of amoxicillin. Journal of hazardous Materials. 2005;122(3):243-50.

5.         Sayadi A, Asadpour M. Pharmaceutical Pollution of the eco-system and Its Detrimental Effects on Public Health. Rafsanjan University of Medical Sciences. 2011;11(3):16.

6.         Bajpai S, Chand N, Mahendra M. The adsorptive removal of a cationic drug from aqueous solution using poly (methacrylic acid) hydrogels. Water SA. 2014;40(1):49-56.

7.         Yoosefian M, Ahmadzadeh S, Aghasi M, Dolatabadi M. Optimization of electrocoagulation process for efficient removal of ciprofloxacin antibiotic using iron electrode; kinetic and isotherm studies of adsorption. Journal of Molecular Liquids. 2017;225:544-53.

8.         Jawetz, Melnick, Adelberg. Medical Microbiology 26, editor. United States2013. 877 p.

9.         Carabineiro S, Thavorn-Amornsri T, Pereira M, Figueiredo J. Adsorption of ciprofloxacin on surface-modified carbon materials. Water research. 2011;45(15):4583-91.

10.       Brillas E, Sirés I, Oturan MA. Electro-Fenton process and related electrochemical technologies based on Fenton’s reaction chemistry. Chemical Reviews. 2009;109(12):6570-631.

11.       mussavi g, jafari j. advanced oxidation for water and waste water treatment tehran: fani hosseinian; 2014. 166 p.

12.       Rahmani A, Mehralipour J, Shabanlo A, Majidi S. Efficiency of ciprofloxacin removal by ozonation process with calcium peroxide from aqueous solutions (Persian). The Journal of Qazvin University of Medical Sciences. 2015;19(2):10.

13.       Yang L, Hu C, Nie Y, Qu J. Catalytic ozonation of selected pharmaceuticals over mesoporous alumina-supported manganese oxide. Environmental science & technology. 2009;43(7):2525-9.

14.       Samanidou V, Demetriou C, Papadoyannis I. Direct determination of four fluoroquinolones, enoxacin, norfloxacin, ofloxacin, and ciprofloxacin, in pharmaceuticals and blood serum by HPLC. Analytical and bioanalytical chemistry. 2003;375(5):623-9.

15.       Zazouli MA, Yousefi M, Dianati RA, Roohafzaee M, Marganpour AM. Disinfection of water contaminated with fecal coliform using ozone: Effect of Some Variables. Journal of health research in community. 2015;1(2):55-62.

16.       Muchohi SN, Thuo N, Karisa J, Muturi A, Kokwaro GO, Maitland K. Determination of ciprofloxacin in human plasma using high-performance liquid chromatography coupled with fluorescence detection: application to a population pharmacokinetics study in children with severe malnutrition. Journal of Chromatography B. 2011;879(2):146-52.

17.       Piñero M-Y, Fuenmayor M, Arce L, Bauza R, Valcárcel M. A simple sample treatment for the determination of enrofloxacin and ciprofloxacin in raw goat milk. Microchemical Journal. 2013;110:533-7.

18.       Rahmani A, Shabanlo A, Majidi S, Tarlani Azar M, Mehralipour J. survey of Ozone / Persulfate Process Efficiency in Ciprofloxacin Antibiotic Removal from Pharmaceutical Waste (persian). Bimonthly Journal of Water and Wastewater. 2014;1:9.

19.       Zheng S, Cui C, Liang Q, Xia X, Yang F. Ozonation performance of WWTP secondary effluent of antibiotic manufacturing wastewater. Chemosphere. 2010;81(9):1159-63.

20.       Prieto A, Möder M, Rodil R, Adrian L, Marco-Urrea E. Degradation of the antibiotics norfloxacin and ciprofloxacin by a white-rot fungus and identification of degradation products. Bioresource technology. 2011;102(23):10987-95.

21.       Sui M, Xing S, Sheng L, Huang S, Guo H. Heterogeneous catalytic ozonation of ciprofloxacin in water with carbon nanotube supported manganese oxides as catalyst. Journal of hazardous materials. 2012;227:227-36.

22. Vasconcelos TG, Kummerer K, Henriques DM, Martins AF. Ciprofloxacin in hospital effluent: Degradation by ozone and photoprocesses. Journal of Hazardous Materials. 2009;169:1154-1158.

23.       Covinich LG, Massa P, Fenoglio RJ, Area MC. Oxidation of hazardous compounds by heterogeneous catalysis based on Cu/Al2o3 system in fenton type reactions. Critical Reviews in Environmental Science and Technology. 2016(just-accepted):00-.

24.       Rahmani A, Asgari G, Barjasteh F. Investigation of the catalytic ozonation performance using copper coated zeolite in the removal of reactive red 198 from aqueous solutions (persian). Scientific Journal of Ilam University of Medical Sciences. 2012;21(3):11.

25.       Carbajo JB, Petre AL, Rosal R, Herrera S, Letón P, García-Calvo E, et al. Continuous ozonation treatment of ofloxacin: Transformation products, water matrix effect and aquatic toxicity. Journal of Hazardous Materials. 2015;292:34-43.

26.       Lüddeke F, Heß S, Gallert C, Winter J, Güde H, Löffler H. Removal of total and antibiotic resistant bacteria in advanced wastewater treatment by ozonation in combination with different filtering techniques. Water Research. 2015;69:243-51.

27.       Uslu MÖ, Balcıoğlu IA. Comparison of the ozonation and Fenton process performances for the treatment of antibiotic containing manure. Science of The Total Environment. 2009;407(11):3450-8.

28.       De Witte B, Dewulf J, Demeestere K, Van Langenhove H. Ozonation and advanced oxidation by the peroxone process of ciprofloxacin in water. Journal of hazardous materials. 2009;161(2):701-8.

29.       Wijannarong S, Aroonsrimorakot S, Thavipoke P, Sangjan S. Removal of reactive dyes from textile dyeing industrial effluent by ozonation process. APCBEE Procedia. 2013;5:279-82.