گیاه پالایی کادمیوم، روی، سرب و منگنز در برگ 9 گونه درختی اطراف کارخانه سیمان (گیاه‌‌‌‌پالایی فلزات سنگین در گونه های درختی)

نوع مقاله: Research Paper

نویسندگان

1 کارشناس ارشد ، گروه علوم جنگل، دانشکده کشاورزی، دانشگاه ایلام، ایلام، ایران.

2 استادیار، گروه علوم جنگل، دانشکده کشاورزی، دانشگاه ‌ایلام، ایلام، ایران.

3 استادیار، گروه علوم جنگل، دانشکده کشاورزی، دانشگاه ایلام، ایلام، ایران.

چکیده

زمینهوهدف: صنایع سیمان از آلاینده ‌های صنعتی، به ‌خصوص آلودگی فلزات‌ سنگین محسوب می‌شوند. امروزه گیاه ‌‌پالایی یکی از بهترین روش‌ها برای حذف و یا کاهش آلودگی فلزات ‌سنگین می‌باشد. مطالعه حاضر با هدف بررسی توان گیاه‌‌ پالایی کادمیوم، روی، سرب و منگنز بر روی گونه‌های عرعر، زبان‌ گنجشک، اقاقیا، نارون‌چتری، اکالیپتوس، بلوط، سرو ‌سیمین، کاج ‌تهران و سرو ‌شیراز در اطراف کارخانه ‌سیمان ‌ایلام انجام شد.
مواد و روش‌ ها: برای اندازه‌گیری فلزات ترسیب شده در برگ گونه‌های مورد بررسی، 0/2 گرم از مادة خشک‌ گیاهی (برگ) توزین و به هر نمونه 4 میلی‌لیتر اسید نیتریک 65 درصد اضافه‌ شد و به مدت 24 ساعت در دمای اتاق قرار داده‌ شدند. سپس توسط دستگاه جذب اتمیک مدل novAA-P400 میزان فلزات مورد ‌نظر در نمونه‌ ها قرائت ‌شدند. تجزیه و تحلیل داده‌ ها با استفاده از نرم‌افزار SPSS 20 و آزمون‌هایKolmogrov-Smirnov، Leven، وOne way Anova   انجام شد.
یافته‌ ها: نتایج نشان ‌داد که میزان کادمیوم در الکتروفیلتر کارخانه تقریباً نزدیک به میزان کادمیوم ترسیب‌ شده در برگ گونه ‌ها می‌باشد، اما میزان سرب، روی و منگنز در الکتروفیلتر کارخانه خیلی بیشتر از میزان ترسیب این سه ‌فلز در برگ گونه‌ها بود. بیشترین و کمترین مقدار ترسیب ‌سرب به ترتیب مربوط به اکالیپتوس و سرو ‌شیراز بود. علاوه‌ براین بیشترین مقدار ترسیب منگنز در عرعر و کمترین میزان مربوط به کاج ‌تهران بود. نتایج همچنین نشان‌ داد بیشترین مقدار ترسیب روی مربوط به بلوط‌ و کمترین مقدار مربوط به زبان‌گنجشک و بیشترین مقدار ترسیب کادمیوم مربوط به عرعر و کمترین مقدار مربوط به کاج ‌تهران بود.
نتیجه‌ گیری: گونه‌ های پهن‌ برگ ترسیب بیشتری از فلزات ‌سنگین را دارند، لذا پیشنهاد می‌شود در برنامه‌های آتی توسعه‌ فضای‌ سبز، کاشت گونه‌ های پهن ‌برگ به‌ ویژه گونه‌ های بلوط، عرعر و اکالیپتوس در اولویت قرار گیرند.

کلیدواژه‌ها


عنوان مقاله [English]

Phytoremediation of Cd, Zn, Pb and Mn in leaf of nine trees species around the cement factory (phytoremediation of heavy metals in trees species)

نویسندگان [English]

  • Amin panah 1
  • Abdolali Karamshahi 2
  • Javad Mirzaei 3
  • Mohsen Darabi 1
1 M.Sc. Department of Forest science, School of Agriculture, Ilam University, Ilam, Iran.
2 Assistant Professor, Department of Forest science, School of Agriculture , Ilam University, Ilam, Iran.
3 Assistant Professor, Department of Forest science, School of Agriculture , Ilam University, Ilam, Iran.
چکیده [English]

Background and abjective: Cement factories are considered as one of the most important pollution sources, especially heavy metals pollution. At present, Phytoremediation is known as one of the best strategies to eliminate or reduce these pollutants. In the present study the phytoremediation ability of Cd, Zn, pb and Mn by nine trees species including Ailanthus glandulosa, Fraxinus rotundifolia, Robinia Pseudo Acasia, Ulmus umbraculifera, Eucalyptus microtheca, Quercus branti, Cupressus arizonica, Pinus eldarica and Cupressus sempervirens were investigated around the Ilam Cement Factory.
Material and Methods: For measuring the deposition of metals in the leaves of studied species, 0.2 grams of their biomasses were separately weighed then 4 ml  nitric acid (65%) was added to each sample. After 24-hincubation at room temperature, the proportions of considered metals were determined by atomic absorption spectrometry.. The obtainedresults were analyzed by SPSS 20 software usingKolmogrov-Smirnov, Leven and One-way ANOVA Tests.
Results: Results showed that the amount of Cd in electro filter of factory was approximately close to the amount of Cd deposited in leaves of  considered species, however; the amounts of pb, zn and mn in electro filter of factory were much more than the amounts of these three metals in leaves. The maximum and minimum accumulation of pb were related to Eucalyptus microtheca and Cupressus sempervirens respectively. In addition, the maximum and minimum amounts of deposited Mn were in Ailanthus glandulosa and Pinus eldarica respectively. The results also indicated that the maximum and minimum accumulation of Zn were in Quercus branti and Fraxinus rotundifolia respectively.
Conclusion: It can be concluded from the results; the broad-leaf species are much more efficient than narrow-leaf ones in  heavy metals remediation, so; it is  suggested that in future development plans of green space, the broad-leaf species, especially Quercus branti, Ailanthus glandulosa Desf and Eucalyptus microtheca are more considered.

کلیدواژه‌ها [English]

  • tree species
  • Heavy metals
  • Ilam Cement Factory
  • Phytoremediation
  1. Taherzadeh Mousavian S, Taheri Abkenar, k. Effect of sediment of Cement plant Dust Pollution on the Plant Species of surrounding areas of plant. 1 st international conference on cement industry, energy and environment, 11-13 Feb; 2013. (Persian)
  2. Abbasi J, Salari, M. Environmental pollution of cement factories. Fifths Conference on Mining Engineering; 2006. (Persian).
  3. Dinakar N, Nagajyothi PC, Suresh S, Udaykiran Y, Damod haram T. Phytotoxicity of cadmium on protein, praline and antioxidant enzyme activities in growing Arachis hypogaea L. seedling. J Environ Sci 2008; 20: 199-206.
  4. Pal M, Horvath E, Janda T, Paldi E, Szalai G. Physiological changes and defense mechanisms induced by cadmium stress in maize. J Plant Nutr Soil Sci 2006; 169: 239-246.
  5. Gisbert C, Ros R, De Haro A, Walker DJ, Bernal MP, Serrano R, Navarro J. plant genetically modify Ed that accumulates Pb is especially promising for phytoremediation. Biochemical and Biophysical Research Communications 2003; 303: 440–445.
  6. Kuehn E. Planning the City Climate. Landscape;1959.  P. 3-9.
  7. Sharzei G, Mobarghei N. Estimating the V alue of Forest Ecosystem for Sulfur Dioxide Pollutant Gas Absorption Function. Eenvironmental Sci 2009; Vol.6, No.3 (Persian).
  8. Mc Pherson EG, Nowak DJ, Rowntree, AA. Chicago's Urban Forest: result of the Chicago Urban Forest Climate Project. North Eastern Forest Experimental Station, Delaware, NEFES; 1994.
  9. Powe NA, Willis KG. Mortality and morbidity benefits of pollution (PM10 and SO2) attributable to woodland in Britain. Environmental Management 2004; 70(3): 119-128.
  10. Burken J, Vroblesky D, Balouet JC. Phytoforensics, Dendrochemistry Phytoscreening: Delineating Contaminants from Past and New Green Tools for Present. Environmental Sci & Technology 2011; 45(15): 6218–6226.
  11. Blaylock MJ, Salt DE, Dushenkov O. Zakharova S, Gussman C, Kapulnik Y. Enhanced accumulation of Pb in Indian mustard by soil-applied chelating agents. Environ Sci & Technology1997; 31(11) :860–865.
  12. Berrow ML, Burridge JC. Uptake, Distribution and Effects of Metal Compounds on Plants, in Metals and their Compounds in the Environment. Merrian, VCH Verlags gesellshaft, Weinhiem 1991; 399-410.
  13. Shabanian N, Cheraghi C. Comparison of hytoremediation of heavy metals by woody species used in urban forestry of Sanandaj city. Iranian Journal of Forest and Poplar Research 2013; Vol. 21 No. 1 (Persian).
  14. Khademi A. kord B. use chlorophyll and Plants for elimination of main  air pollutants. Journal of sci and techniques Natural Resources 2010;  Vol.5, No.1 (Persian).
  15. keneshloo H, Eghtesadi A. The effect of afforestation in reduction oil pollution (heavy metals). Journal of Natural Environment, Iranian Journal of Natural Resources 2011; Vol. 64, No.2, 185-197 (Persian).
  16. Bahmanpoor H. Environmental considerations and porting activities in metropolitans with an emphasis on urban green spaces. Journal of Physical Education 2011; 32(2): Vol 10, No 2 (Persian).
  17. Noorpoor A, Kazemi N. Dispersion Modeling of Air Pollutants from the Ilam Cement Factory Stack. Journal of Civil and Environmental Engineering 2014; V 44, No 1 (Persian).
  18. Celik A, Kartal AA, Akdogan A, Kaska Y. Determining the heavy metal pollution in Denizli (Turkey) by using Robinio pseudo-acacia. Environment International 2005; 31(3): 105-112.
  19. Lindsay, W., and Norvell, W. A., (1978). Development of a DTPA soil test for zinc, iron, manganese, and copper. Soil Science Society of America Journal, 42(3), 421-428.
  20. Omar JM, Jasim F. some observations on the use of electro thermal atomic absorption spectrophotometry for the determination of chromium and copper in Portland cement. Microchemistry Journal 1990;  47(6): 649-622.
  21. Iqbal MZ, Shafig M. Periddical Effect of Cement Dust Pollution on the Growth of Some Plant Species. Turk J Bot 2001; 79(14): 3-19.
  22. Abdullah C, Iqbal M. Response of automobiles stone and cement particulate matters on stomatal clogging of plants. Geobios 1997; 79(17): 91-107.
  23. Martines LL, Mourato PM. Effect of excess copper on tomato plants: Growth parameters, enzyme, chlorophyll, and mineral content. J Plant Nutr 2006; 29(11) : 2179-2198.
  24. Rubio C, Lucas JRD, Gutierrez AJ, Glez-Weller D, Perez B, Caballero JM, Revert C, Hardisson A. Evaluation of metal concentrations in mentha herbal teas (Mentha piperita L. Mentha pulegium L and Mentha species) by inductively coupled plasma spectrometry. Journal of pharmaceutical and biomedical analysis 2012; 71(4): 11-17.
  25. Sebastiani L, Scebba F, Tognetti R. Heavy metal accumulation and growth responses in poplar clones Eridano (Populus deltoides maximowiczii) and I-214 (P. euramericana) exposed to industrial waste. Environmental and Experimental Botany 2004; 52 (1): 79-88.
  26. Ghosh M, Singh SP. A comparative study of cadmium hytoextraction accumulator and weed species. Environmental Pollution 2005; 133(6): 365–371.
  27. Majnonian H. Trees and Environment. Iranian department of environment; 1990 (Persian).
  28. Dominguez MT., Madrid F, Maranon T, Murillo JM. Cadmium availability in soil and retention in oak roots: Potential for phytostabilization. Chemosphere 2009; 76(4): 480–486.
  29. Vahabi A, ghodosi j. the distribution of Pb in plant and soilsof  lahijan different tea gardens from the road. U. jahad 1985. (Persian).