بررسی مهم‌ترین عوامل مؤثر بر غلظت ذرات معلق کوچک‌تر از 10 میکرون (PM10) با استفاده از رگرسیون مؤلفه‌های اصلی

نوع مقاله: مقالات پژوهشی

نویسندگان

1 گروه مهندسی محیط زیست، دانشکده منابع طبیعی و محیط زیست، دانشگاه یزد، یزد، ایران.

2 گروه آمار، دانشکده علوم پایه، دانشگاه یزد، یزد، ایران.

چکیده

زمینه و هدف: ذرات معلق موجود در هوا با منشأ طبیعی و انسانی، تأثیرات قابل توجهی بر آب‌و‌هوا، محیط زیست و سلامت انسان دارند. مطالعات اپیدمیولوژیک متعددی نشان داده‌اند که بین غلظت ذرات معلق با نتایج نامطلوب بهداشتی مختلف ارتباط مستقیمی وجود دارد، لذا مطالعه حاضر با هدف کلی تعیین مهم‌ترین پارامترهای تأثیرگذار بر غلظت PM10 ایستگاه تجریش تهران و ایجاد مدل برآوردگر PM10 انجام شد.
روش‌کار: در مطالعه حاضر یک مدل با استفاده از رگرسیون مؤلفه ‌های اصلی (PCR) برای بررسی ارتباط بین غلظت ساعتی ذرات معلق کوچک‌تر از 10 میکرون با پارامترهای هواشناسی (سرعت و جهت باد، فشار، رطوبت و دمای هوا) و آلودگی هوای (CO، NO2، SO2، NOx، NMHC و THC) ایستگاه تجریش شهر تهران مربوط به دوره زمانی 1385 تا 1390 ارائه شد. نتایج ارزیابی عملکرد مدل PCR در مرحله آموزش و آزمون با استفاده از شاخص‌های آماری RMSE، MAE، R و IA مورد سنجش قرار گرفت.
یافته‌ها: نتایج ورود مؤلفه‌های اصلی به مدل رگرسیون چندگانه نشان داد که مهم‌ترین متغیر مؤثر بر غلظت PM10، دمای هوا و سرعت باد می‌باشند. همچنین آلاینده‌های CO و SO2 عوامل تشدید کننده PM10 هستند. نتایج نشان داد مدل PCR در مرحله آزمون قابلیت تخمین 41 درصد مقادیر PM10 را دارد.
نتیجه‌گیری: نتایج تحلیل رگرسیون مؤلفه‌های اصلی نشان داد که پارامترهای هواشناسی از عوامل مؤثر بر کاهش غلظت PM10 در محدوده ایستگاه تجریش می‌باشند.
 

کلیدواژه‌ها


عنوان مقاله [English]

A study on the most important factors affecting the concentration of particulate matter smaller than 10 microns (PM10) using principal component regression

نویسندگان [English]

  • Alireza Ehsanzadeh 1
  • Farhad Nejadkoorki 1
  • Sattar Khodadoostan 2
1 Department of Environmental Engineering, Yazd University, Yazd, Iran.
2 Department of Statistics, Faculty of Basic Sciences, Yazd University, Yazd, Iran.
چکیده [English]

Background & objectives:
Air particulate matters which have natural and human made origins have significant effects on the climate, the environment and human health.  Several epidemiological studies have shown a direct relationship among the concentrations of suspended particles with different adverse health effects. The general purpose of this research was to determine the most important parameters affecting on the concentration of PM10 in Tajrish station (Tehran) and develop an estimator model for PM10.
Materials & methods: In this study, a model is constructed using principal component regression (PCR) for the relationship between the hourly concentration of particulate matter smaller than 10 microns with meteorological parameters (WD, WS, T, P, H) and air pollution parameters (CO, NO2, SO2, NOx, NMHC, THC) in Tajrish station (Tehran). The results of the performance evaluation of PCR model were measured in training and testing stages using RMSE, MAE, R and IA as statistical indicators.
Results: The results of principal components import into multiple regression model showed that the most important variable affecting on the concentrations of PM10, are air temperature and the wind speed.  Also, CO and SO2 emissions were known as synergic factors for PM10 concentration. The results showed that PCR model is able to estimate 41% of PM10 concentrations in the testing.
 
Conclusion: The principal components regression analysis showed that meteorological parameters are one of most important factors affecting on the reduction of PM10 concentration in Tajrish station (Tehran).

کلیدواژه‌ها [English]

  • : Particulate matter smaller than 10 microns
  • multiple linear regression
  • principal component analysis
  • Air pollution
  • Tehran
1.   Li L, Qian J, Ou C-Q, Zhou Y-X, Guo C, Guo Y. Spatial and temporal analysis of Air Pollution Index and its timescale-dependent relationship with meteorological factors in Guangzhou, China, 2001–2011. Environmental Pollution. 2014;190:75-81.

2.   You W, Zang Z, Zhang L, Li Z, Chen D, Zhang G. Estimating ground-level PM10 concentration in northwestern China using geographically weighted regression based on satellite AOD combined with CALIPSO and MODIS fire count. Remote Sensing of Environment. 2015;168:276-85.

3.   Petelin D, Grancharova A, Kocijan J. Evolving Gaussian process models for prediction of ozone concentration in the air. Simulation modelling practice and theory. 2013;33:68-80.

4.   Russo A, Raischel F, Lind PG. Air quality prediction using optimal neural networks with stochastic variables. Atmospheric Environment. 2013;79:822-30.

5.   Chai Y, Jia L, Zhang Z, editors. Mamdani model based adaptive neural fuzzy inference system and its application in traffic level of service evaluation. Fuzzy Systems and Knowledge Discovery, 2009 FSKD'09 Sixth International Conference on; 2009: IEEE.

6.   Vardoulakis S, Kassomenos P. Sources and factors affecting PM 10 levels in two European cities: implications for local air quality management. Atmospheric Environment. 2008;42(17):3949-63.

7.   Hrdličková Z, Michalek J, Kolář M, Veselý V. Identification of factors affecting air pollution by dust aerosol PM 10 in Brno City, Czech Republic. Atmospheric Environment. 2008;42(37):8661-73.

8.   Chen Y, Shi R, Shu S, Gao W. Ensemble and enhanced PM 10 concentration forecast model based on stepwise regression and wavelet analysis. Atmospheric Environment. 2013;74:346-59.

9.   Kuo C-Y, Chen P-T, Lin Y-C, Lin C-Y, Chen H-H, Shih J-F. Factors affecting the concentrations of PM 10 in central Taiwan. Chemosphere. 2008;70(7):1273-9.

10.          Krasnov H, Katra I, Friger M. Increase in dust storm related PM 10 concentrations: A time series analysis of 2001–2015. Environmental Pollution. 2016;213:36-42.

11.          Hao Y, Liu Y-M. The influential factors of urban PM 2.5 concentrations in China: a spatial econometric analysis. Journal of Cleaner Production. 2016;112:1443-53.

12.          Unal YS, Toros H, Deniz A, Incecik S. Influence of meteorological factors and emission sources on spatial and temporal variations of PM10 concentrations in Istanbul metropolitan area. Atmospheric Environment. 2011;45(31):5504-13.

13.          Tian G, Qiao Z, Xu X. Characteristics of particulate matter (PM 10) and its relationship with meteorological factors during 2001–2012 in Beijing. Environmental Pollution. 2014;192:266-74.

14.          Rawlings JO, Pantula SG, Dickey DA. Applied regression analysis: a research tool: Springer Science & Business Media; 1998.

15.          Chatterjee S, Hadi AS. Regression analysis by example: John Wiley & Sons; 2015.

16.          NouriI, R.E., K. Ashrafi, and A. Azhdarpour, Comparison of ANN and PCA based multivariate linear regression applied to predict the daily average concentration of CO: A case study of Tehran. 2008. Journal of the Earth and Space Physics.2008:34(2).

17.          Çamdevýren H, Demýr N, Kanik A, Keskýn S. Use of principal component scores in multiple linear regression models for prediction of Chlorophyll-a in reservoirs. Ecological Modelling. 2005;181(4):581-9.

18.          Abdul-Wahab SA, Bakheit CS, Al-Alawi SM. Principal component and multiple regression analysis in modelling of ground-level ozone and factors affecting its concentrations. Environmental Modelling & Software. 2005;20(10):1263-71.

19.          Jolliffe I. Principal component analysis: Wiley Online Library; 2002.