بهینه سازی حذف ترکیبات فنلی از فاضلاب در فرایند اکسیداسیون الکتروشیمیایی با آندهای کاتالیستی و جداساز سلولزی

نوع مقاله: مقالات پژوهشی

نویسندگان

1 گروه مهندسی بهداشت محیط، مرکز تحقیقات کیفیت آب، پژوهشکده محیط زیست، دانشگاه علوم پزشکی تهران، تهران، ایران.

2 گروه مهندسی بهداشت محیط، دانشکده بهداشت، دانشگاه علوم پزشکی ایران، تهران، ایران.

3 گروه مهندسی بهداشت محیط، دانشکده بهداشت، دانشگاه علوم پزشکی تهران، تهران، ایران.

4 گروه مهندسی بهداشت محیط، مرکز تحقیقات علوم بهداشتی، دانشکده بهداشت، دانشگاه علوم پزشکی مشهد، مشهد، ایران.

چکیده

زمینه‌ و‌ هدف: ترکیبات فنلی از جمله آلاینده‌های مقاوم به تجزیه بیولوژیک هستند و حذف موثر آن ها از محیط آب و فاضلاب از نظر بهداشتی و زیست محیطی دارای اهمیت است. مطالعه حاضر با هدف بررسی کارایی فرآیند اکسیداسیون الکتروشیمیایی در حذف ترکیبات فنلی با استفاده از یک رآکتور دوقسمتی جریان مداوم انجام شد.
روش‌کار: رآکتوری حاوی آندهای کاتالیستی SnO2-Sb، کاتدهای آهن و یک جداساز سلولزی برای تفکیک محفظه آند از محفظه کاتد استفاده شد. تأثیر متغیرهای غلظت اولیه فنل (88/40-12/14 میلی‌گرم بر لیتر)، زمان ماند (77/82-23/32 دقیقه) و شدت جریان برق (42/0-18/0 آمپر) بر کارایی حذف و غلظت باقی‌مانده TPh و انرژی مصرفی با استفاده از متدولوژی سطح پاسخ تعیین شد.
یافته‌ها:کارایی حذف TPh بیش از همه به فاکتور زمان ماند و پس از آن به ترتیب به شدت جریان برق و غلظت اولیه آلاینده وابسته بود. غلظت اولیه آلاینده، مهم‌ترین عامل مؤثر بر غلظت باقی‌مانده TPh در پساب تعیین شد. انرژی مورد نیاز (kWh m‒3) عمدتاً توسط فاکتور زمان ماند و سپس شدت جریان برق کنترل شد و مستقل از غلظت اولیه آلاینده بود. تحت شرایط بهینه، کارایی حذف TPh 21/93% به‌دست آمد که با مصرف انرژی 40/34 کیلووات ساعت بر متر مکعب حاصل شد. در این شرایط، باقی‌مانده ترکیبات فنلی در پساب خروجی از رآکتور در سطح 1 میلی‌گرم بر لیتر قرار داشت که با استاندارد تعیین شده توسط سازمان حفاظت محیط زیست ایران برای تخلیه به آب‌های سطحی همخوانی داشت.
نتیجه‌گیری:فرآیند الکترواکسیداسیون با جداساز سلولزی کارایی بسیار بالایی برای حذف ترکیبات فنلی دارد و قادر است حدود مجاز تخلیه پساب به محیط را برآورده کند.
نوع مقاله: مقاله پژوهشی

کلیدواژه‌ها


عنوان مقاله [English]

Optimization of phenolic compounds removal from wastewater in electrochemical oxidation process using catalytic anodes and cellulosic separator

نویسندگان [English]

  • Mitra Gholami 1
  • Mojtaba Davoudi 2
  • Simin Naseri 3
  • Amir Hossein Mahvi 3
  • Mehdi Farzadkia 2
  • Ali Esrafili 2
  • Hossein Alidadi 4
1 Department of Environmental Health engineering, , Center for Water Quality Research (CWQR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran.
2 Department of Environmental Health Engineering, School of Public Health, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran.
3 Department of Environmental Health engineering, , Center for Water Quality Research (CWQR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran.
4 Department of Environmental Health Engineering, Health Science Research Center, School of Public Health, Mashhad University of Medical Sciences, Mashhad, Iran.
چکیده [English]

Backgrounds & Objectives:
Elimination of phenolic compounds which is considered as resistant pollutants to biological degradation has a great importance. This study aims to investigate the electrochemical oxidation process efficiency in removal of phenol compounds using a continuous and divided rector.
 
Materials & Methods: The catalytic anodes of Ti/SnO2-Sb and cathodes of iron were employed in a reactor divided into anolyte and catholyte chambers by a cellulosic separator. The influence of initial phenol concentration (14.12‒40.88 mg L‒1), retention time (32.23‒82.77 min), and current intensity (0.18‒0.42 A) on TPh removal efficiency, TPh residual concentration, and energy consumption was investigated using response surface methodology.
 
Results: The results showed that TPh removal efficiency strongly depends on retention time, followed by current intensity and initial phenol concentration. The importance order of factors affecting on TPh residual concentration were distinguished as initial TPh concentration > retention time > current intensity. The energy consumption in terms of kWh m‒3 is mostly affected by retention time and then current intensity, and irrespective of initial phenol concentration. Under the optimal conditions, removal efficiency of 93.21%, residual concentration of 1 mg L‒1, and energy consumption of 34.40 kWh m‒3 is achieved.
Conclusion: Based on the obtained results, the electro-oxidation is a very efficient process for diminution of wastewater phenolic content, and is able to set the allowable limits to discharge to the environment.

کلیدواژه‌ها [English]

  • Electrochemical oxidation
  • Phenol removal
  • Cellulosic separator
  • Response surface methodology

1. Duan X, Ma F, Yuan Z, Chang L, Jin X. Electrochemical degradation of phenol in aqueous solution using PbO2 anode. Journal of the Taiwan Institute of Chemical Engineers. 2013;44(1):95-102.

2. Pimentel M, Oturan N, Dezotti M, Oturan MA. Phenol degradation by advanced electrochemical oxidation process electro-Fenton using a carbon felt cathode. Applied Catalysis B: Environmental. 2008;83(1):140-49.

3. Akbari H, Khorshid AR, Hozhabri K, Yousefi M, Mahvi AH. PHENOL REMOVAL FROM AQUEOUS SOLUTION USING DATE PIT ASH AS ADSORBENT. FRESENIUS ENVIRONMENTAL BULLETIN. 2014;23(6):1329-36.

4. Gholizadeh A, Kermani M, Gholami M, Farzadkia M. Kinetic and isotherm studies of adsorption and biosorption processes in the removal of phenolic compounds from aqueous solutions: comparative study. Journal of environmental health science and engineering. 2013;11(1):29.

5. Samarghandi M, Nouri J, Mesdaghinia A, Mahvi A, Nasseri S, Vaezi F. Efficiency removal of phenol, lead and cadmium by means of UV/TiO2/H2O2 processes. International Journal of Environmental Science & Technology. 2007;4(1):19-25.

6. Mahvi AH, Maleki A, Alimohamadi M, Ghasri A. Photooxidation of phenol in aqueous solution: toxicity of intermediates. Korean Journal of Chemical Engineering. 2007;24(1):79-82.

7. Maleki A, Mahvi A, Nabizadeh FVR. Ultrasonic degradation of phenol and determination of the oxidation by-products toxicity. Iranian Journal of Environmental Health Science & Engineering. 2005;2(3):201-06.

8. Maleki A, Mahvi A, Mesdaghinia A, Naddafi K. Degradation and toxicity reduction of phenol by ultrasound waves. Bulletin of the Chemical Society of Ethiopia. 2007;21(1):33- 38.

9. Bazrafshan E, Biglari H, Mahvi AH. Phenol removal by electrocoagulation process from aqueous solutions. Fresenius Environmental Bulletin. 2012;21(2):364-71.

10. Samet Y, Agengui L, Abdelhédi R. Electrochemical degradation of chlorpyrifos pesticide in aqueous solutions by anodic oxidation at boron-doped diamond electrodes. Chemical Engineering Journal. 2010;161(1):167-72.

11. Pérez G, Ibáñez R, Urtiaga A, Ortiz I. Kinetic study of the simultaneous electrochemical removal of aqueous nitrogen compounds using BDD electrodes. Chemical Engineering Journal. 2012;197:475-82.

12. Li X-y, Cui Y-h, Feng Y-j, Xie Z-m, Gu J-D. Reaction pathways and mechanisms of the electrochemical degradation of phenol on different electrodes. Water Research. 2005;39(10):1972-81.

13. Iniesta J, González-Garcıa J, Exposito E, Montiel V, Aldaz A. Influence of chloride ion on electrochemical degradation of phenol in alkaline medium using bismuth doped and pure PbO2 anodes. Water Research. 2001;35(14):3291- 300.

14. Hastie J, Bejan D, Teutli-León M, Bunce NJ. Electrochemical methods for degradation of Orange II (sodium 4-(2-hydroxy-1-naphthylazo) benzenesulfonate). Industrial & engineering chemistry research. 2006;45(14):4898-904.

15. Wang YH, Chan KY, Li XY, So SK. Electrochemical degradation of 4-chlorophenol at nickel–antimony doped tin oxide electrode. Chemosphere. 2006;65(7):1087-93.

16. Radjenović J, Farré MJ, Mu Y, Gernjak W, Keller J. Reductive electrochemical remediation of emerging and regulated disinfection byproducts. Water research. 2012;46(6):1705- 14.

17. Hou Y-T, Ren J, Liu H-J, Li F-D. Efficiency of electrolyzed water (EW) on inhibition of< i> Phytophthora parasitica var.< i> nicotianae growth< i> in vitro. Crop Protection. 2012;42:128-33.

18. Costa CR, Montilla F, Morallón E, Olivi P. Electrochemical oxidation of synthetic tannery wastewater in chloridefree aqueous media. Journal of hazardous materials. 2010;180(1):429-35.

19. Polcaro AM, Vacca A, Mascia M, Palmas S. Oxidation at boron doped diamond electrodes: an effective method to mineralise triazines. Electrochimica acta. 2005;50(9):1841- 47.

20. Lin H, Niu J, Ding S, Zhang L. Electrochemical degradation of perfluorooctanoic acid (PFOA) by Ti/SnO 2–Sb, Ti/ SnO 2–Sb/PbO 2 and Ti/SnO 2–Sb/MnO 2 anodes. Water research. 2012;46(7):2281-89.

21. Chen X, Gao F, Chen G. Comparison of Ti/BDD and Ti/ SnO2–Sb2O5 electrodes for pollutant oxidation. Journal of Applied Electrochemistry. 2005;35(2):185-91.

22. Davoudi M, Gholami M, Naseri S, Mahvi AH, Farzadkia M, Esrafili A, et al. Application of electrochemical reactor divided by cellulosic membrane for optimized simultaneous removal of phenols, chromium, and ammonia from tannery effluents. Toxicological & Environmental Chemistry. 2014;96(9):1310-32.

23. Gholami M, Mirzaei R, Mohammadi R, Zarghampour Z, Afshari A. Destruction of Escherichia coli and Enterococcus faecalis using Low Frequency Ultrasound Technology: A Response Surface Methodology. Health Scope. 2014;2(4):e14213.

24. Garcia-Segura S, Almeida LC, Bocchi N, Brillas E. Solar photoelectro-Fenton degradation of the herbicide 4-chloro-2-methylphenoxyacetic acid optimized by response surface methodology. Journal of hazardous materials. 2011;194:109-18.

25. Garcıa Garcıa I, Jimenez Pena P, Bonilla Venceslada J, 115 Martın Martın A, Martın Santos M, Ramos Gomez E. Removal of phenol compounds from olive mill wastewater using Phanerochaete chrysosporium, Aspergillus niger, Aspergillus terreus and Geotrichum candidum. Process Biochemistry. 2000;35(8):751-58.

26. Wu J, Zhang H, Oturan N, Wang Y, Chen L, Oturan MA. Application of response surface methodology to the removal of the antibiotic tetracycline by electrochemical process using carbon-felt cathode and DSA (Ti/RuO2– IrO2) anode. Chemosphere. 2012;87(6):614-20.

27. Virkutyte J, Rokhina E, Jegatheesan V. Optimisation of Electro-Fenton denitrification of a model wastewater using a response surface methodology. Bioresource technology. 2010;101(5):1440-46.

28. Zhang Z, Zheng H. Optimization for decolorization of azo dye acid green 20 by ultrasound and H2O2 using response surface methodology. Journal of hazardous materials. 2009;172(2):1388-93.

29. Abdessalem AK, Oturan N, Bellakhal N, Dachraoui M, Oturan MA. Experimental design methodology applied to electro-Fenton treatment for degradation of herbicide chlortoluron. Applied Catalysis B: Environmental. 2008;78(3):334-41.

30. Asaithambi P, Matheswaran M. Electrochemical treatment of simulated sugar industrial effluent: Optimization and modeling using a response surface methodology. Arabian Journal of Chemistry. 2011.

31. Zaviska F, Drogui P, Blais JF, Mercier G, Lafrance P. Experimental design methodology applied to electrochemical oxidation of the herbicide atrazine using Ti/IrO2 and Ti/SnO2 circular anode electrodes. Journal of Hazardous Materials. 2011;185(2):1499-507.

32. Velegraki T, Balayiannis G, Diamadopoulos E, Katsaounis A, Mantzavinos D. Electrochemical oxidation of benzoic acid in water over boron-doped diamond electrodes: Statistical analysis of key operating parameters, kinetic modeling, reaction by-products and ecotoxicity. Chemical Engineering Journal. 2010;160(2):538-48.

33. Mu’azu ND, Al-Malack MH, Jarrah N. Electrochemical oxidation of low phenol concentration on boron doped diamond anodes: optimization via response surface methodology. Desalination and Water Treatment. 2013 (ahead-of-print):1-13.

34. El-Ghenymy A, Garcia-Segura S, Rodríguez RM, Brillas E, El Begrani MS, Abdelouahid BA. Optimization of the electro-Fenton and solar photoelectro-Fenton treatments of sulfanilic acid solutions using a pre-pilot flow plant by response surface methodology. Journal of hazardous materials. 2012;221:288-97