شبیه‌سازی و برآورد کیفیت بهداشتی هوای شهری با استفاده از هوش مصنوعی (مطالعه موردی: ایستگاه قلهک شهر تهران)

نوع مقاله: Research Paper

نویسندگان

1 دانشجوی کارشناسی ارشد مهندسی محیط زیست، دانشکده منابع طبیعی، دانشگاه یزد

2 دانشیار گروه مهندسی محیط زیست، دانشکده منابع طبیعی، دانشگاه یزد

3 دانشیار گروه مهندسی آبخیزداری، دانشکده منابع طبیعی، دانشگاه یزد

چکیده

 زمینه و هدف: کیفیت نامطلوب هوا ناشی از وجود غلظت‌های زیاد آلاینده‌ها در کلان شهر تهران موجب ایجاد بیماری‌های مختلف و مشکلات فراوان برای سلامتی و رفاه عمومی این کلان‌شهر گردیده است و همچنین موجب آسیب به محیط زیست و موجودات زنده می‌شود.
 
روش کار: شاخص کیفیت هوا (AQI) یک ابزار کلیدی جهت آگاهی از کیفیت هوا، نحوۀ اثر آلودگی هوا بر سلامت و روش‌های محافظتی در برابر آلودگی هوا است. هدف اصلی این تحقیق مدل‌سازی و برآورد شاخص کیفیت هوا با درخت تصمیم و الگوریتم بوستینگ تطبیقی است. از داده‌های ساعتی غلظت آلاینده‌های هوا و پارامترهای هواشناسی ایستگاه قلهک شهر تهران به‌منظور مدل‌سازی و برآورد AQI استفاده شد
 
یافته‌ها: نتایج تحقیق نشان داد که مدل درخت تصمیم عملکرد بهتری نسبت به مدل بوستینگ تطبیقی دارد. برای ارزیابی نتایج مدل‌های مذکور، ریشه میانگین مربعات خطا (RMSE)، میانگین مطلق خطا (MAE)، میانگین مربعات خطا (MSE) و ضریب همبستگی (R) در مدل درخت تصمیم برای مرحله آزمون به ترتیب 75/0 ، 101/0 ، 563/0 و 99/0 حاصل شد که در مقایسه با مدل بوستینگ تطبیقی (1/7RMSE=، 11/5MAE=، 52/50MSE= و 95/0R=) حاکی از برتری مطلق نتایج درخت تصمیم رگرسیون نسبت به مدل بوستینگ تطبیقی است.
 
نتیجه‌گیری: نتایج حاصل از این مطالعه نشان داد که می‌توان از مدل درخت تصمیم رگرسیون به عنوان یک مدل کارآمد جهت مدل‌سازی و برآورد شاخص کیفیت هوا شهری استفاده نمود.

کلیدواژه‌ها


عنوان مقاله [English]

A study on the Simulation and Estimation of the urban air quality by using artificial intelligence (case study: Gholhak Station of Tehran (

نویسندگان [English]

  • Alireza Ehsanzadeh 1
  • Farhad Nejadkoorki 2
  • Ali Taleb 3
1 Graduate student, Department of Environmental Engineering, University of Yazd Iran
2 Faculty member of the Department of Environmental Engineering, University of Yazd Iran
3 Faculty member of the Department of Watershed Management Engineering, University of Yazd Iran
چکیده [English]

Background and objective: Air pollution in Tehran, because of high concentration of pollutants, has caused various diseases and many problems concerning the public health and welfare of citizens and also damages to the environment and living organisms.
 
Materials & Methods: Air Quality Index (AQI) is a key tool to monitor the air quality, to realize the effects of air pollution on health and to choose methods against air pollution. This study aimed at modeling and estimation AQI by CART algorithm and adaptive boosting algorithm (AdaBoost). Hourly data on concentration of air pollutants and meteorological parameters related to Gholhak stations in Tehran was used for modeling and estimation of AQI.
 
Results: The results showed that CART model had better performance than AdaBoost model. To evaluate these models, root mean square error (RMSE), mean absolute error (MAE), mean squared error (MSE) and correlation coefficient (R) of the CART model for the test, were respectively, 0.75, 0.101, 0.563, and 0.99 when compared to the AdaBoost model (RMSE=7.1, MAE=5.11, MSE=50.52 and R=0.95) which implies the absolute superiority of the CART model than the AdaBoost model.
 
Conclusion:The results of this study showed that regression decision tree model can be used as an efficient model for modelling and estimation of urban air quality index.

کلیدواژه‌ها [English]

  • Simulation
  • Air Quality Index
  • Air pollution
  • Decision tree
  • Adaptive Boosting Algorithm

.1         Zhang Y, Bocquet M, Mallet V, Seigneur C, Baklanov A. Real-time air quality forecasting, part I: History, techniques, and current status. Atmospheric Environment. 2012;60:632-55.

.2         Sowlat MH, Gharibi H, Yunesian M, Tayefeh Mahmoudi M, Lotfi S. A novel, fuzzy-based air quality index (FAQI) for air quality assessment. Atmospheric Environment. 2011;45(12):2050-9.

.3         Künzli N, Kaiser R, Medina S, Studnicka M, Chanel O, Filliger P, et al. Public-health impact of outdoor and traffic-related air pollution: a European assessment. The Lancet. 2000;356(9232):795-801.

.4         Cheng W-L, Chen Y-S, Zhang J, Lyons T, Pai J-L, Chang S-H. Comparison of the revised air quality index with the PSI and AQI indices. Science of the total environment. 2007;382(2):191-8.

.5         Kumar A, Goyal P. Forecasting of air quality index in Delhi using neural network based on principal component analysis. Pure and Applied Geophysics. 2013;170(4):711-22.

.6         Carbajal-Hernández JJ, Sánchez-Fernández LP, Carrasco-Ochoa JA, Martínez-Trinidad JF. Assessment and prediction of air quality using fuzzy logic and autoregressive models. Atmospheric Environment. 2012;60:37-50.

.7         Kumar A, Goyal P. Forecasting of air quality index in Delhi using principal component regression technique. Atmospheric Pollution Research. 2011;2:436-44.

.8         Singh KP, Gupta S, Rai P. Identifying pollution sources and predicting urban air quality using ensemble learning methods. Atmospheric Environment. 2013;80:426-37.

.9         Russo A, Raischel F, Lind PG. Air quality prediction using optimal neural networks with stochastic variables. Atmospheric Environment. 2013;79:822-30.

10.       نوری، ر.، اشرفی، خ. اژدرپور، ا.. مقایسه کاربرد روش های شبکه عصبی مصنوعی و رگرسیون خطی چندمتغیره بر اساس تحلیل مولفه های اصلی برای پیش بینی غلظت میانگین روزانه کربن مونوکسید: بررسی موردی شهر تهران. مجله فیزیک زمین و فضا، 1387. شماره 34، 135-152.

11.       خزاعی، ا.، آل شیخ، ع. کریمی، م. وحیدنیا، م.. محمدحسن. پیش بینی و مدلسازی غلظت آلاینده مونوکسیدکربن با تلفیق شبکه عصبی-فازی تطبیقی و سیستم اطلاعات جغرافیایی. مجله سنجش از دور و سامانه اطلاعات جغرافیایی در منابع طبیعی (کاربرد سنجش از دور و  GISدر علوم منابع طبیعی). 1391. شماره 3، 21-33.

.12       Lee CC, Ballinger TJ, Domino NA. Utilizing map pattern classification and surface weather typing to relate climate to the Air Quality Index in Cleveland, Ohio. Atmospheric Environment. 2012;63:50-9.

.13       Breiman L, Friedman JH, Olshen R, Stone C. Classification and regression trees. New York: Chapman & Hall; 1993.

14.       امیدوار، ک.، شفیعی، ش. تقی زاده، ز.. ارزیابی کارایی مدل درخت تصمیم در پیش بینی بارش ایستگاه سینوپتیک کرمانشاه. نشریه تحقیقات کاربردی علوم جغرافیایی. 1393;14(34):89-110.

.15       Naslmosavi S, Aghaei Chadegani A, Mehri M. Comparing the Ability of Bayesian Networks and Adaboost for Predicting Financial Distress of Firms Listed on Tehran Stock Exchange (TSE). Australian Journal of Basic and Applied Sciences. 2011;5(10):629-34.