بررسی کارایی فرآیند فتوکاتالیستی با استفاده از نانوذرات سبز آهن در حذف رنگ ری اکتیو رد 198 از محلولهای آبی

نوع مقاله: مقالات پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد مهندسی بهداشت محیط ، دانشکده بهداشت ، دانشگاه علوم پزشکی بیرجند ،بیرجند ، ایران

2 مرکز تحقیقات عوامل اجتماعی موثر بر سلامت ،عضو گروه مهندسی بهداشت محیط دانشکده بهداشت ، دانشگاه علوم پزشکی بیرجند ،بیرجند ، ایران

10.22038/jreh.2020.44933.1338

چکیده

زمینه و هدف : امروزه آلودگی محیطی به عنوان یک مشکل اساسی زندگی روزمره ی انسان هاست. رنگ یکی از مهم ترین آلاینده های محیط زیست است که در پساب صنایع به خصوص صنایع نساجی به وفور دیده می شود . به همین دلیل هدف از این مطالعه بررسی کارایی فرآیند فتوکاتالیستی با استفاده از نانوذرات سبز آهن در حذف رنگ ری اکتیو رد 198 از محلولهای آبی قرار گرفته است.
مواد وروش ها : این مطالعه از نوع آزمایشگاهی است که با استفاده از یک راکتور ناپیوسته همراه لامپ UV A انجام شده است. در این مطالعه اثر متغییر های مختلف از جمله: pH(3-11) ، غلظت رنگ ری اکتیو رد (10-100 mg/l)، دوز (0.25-3 g/l) و زمان تماس(2-60min) بررسی گردید . خصوصیات نانو ذرات از تکنیک های مختلف TEM، FESEM و FTIR مورد بررسی قرار گرفت. تجزیه و تحلیل نتایج توسط نرم افزار Excel انجام گرفت .
یافته ها : آنالیزهای مختلف نشان داد که نانو ذرات سبز آهن تشکیل شده بیشترین درصد حذف در pH برابر با 3 ، دوز نانوکاتالیست g/L 5/1، زمان تماس 25 دقیقه و غلظت رنگ ری اکتیو رد 198، mg/L 25 برابر با 96.2% بدست آمد.
نتیجه گیری: نتایج نشان می دهد فرآیند فتوکاتالیستی با استفاده از نانوذرات سبز آهن می تواند با کارایی مناسبی جهت حذف رنگ ری اکتیو رد 198 از محلولهای آبی استفاده گردد.

کلیدواژه‌ها


عنوان مقاله [English]

Photocatalytic Process Using Green Iron Nanoparticles for azo dye degradation from aqueous solution

نویسندگان [English]

  • taher shahryari 2
  • rasol khosravi 2
1 2. MSc in Environmental Health Engineering, Faculty of Health, Birjand University of Medical Sciences, Birjand, Iran
2 Social Determinants of Health Research Center, Birjand University of Medical Sciences, Birjand, Iran
چکیده [English]

Background and purpose: Today, environmental pollution is a major problem for human life. Dye is one of the most important environment pollutants that is found in the industrial wastewater, especially in the textile industry wastewater. Therefore, the aim of this study was to evaluate the photocatalytic effect of green iron nanoparticles as catalyst for Reactive red 198 dye degradation in photocatalytic process.
Materials and Methods: This study was performed laboratory using a batch reactor under UV A irradiation. In this study, the effect of different variables including pH (3-11), dye concentration (10-100 mg / l), catalyst dosage (0.25-3 g/l) and contact time (2-60 min) were investigated. The characterization of prepared nanoparticles were studied using different techniques such as TEM, FESEM and FTIR analysis. The obtained data were analyzed by Excel software.
Results :Also, the photocatalytic tests showed high performance of NPs for dye degradation as catalyst in photocatalytic process. The highest removal efficiency achieved 96.2% at pH 3, catalyst dosage 1.5 g / L, contact time 15 min, and for dye concentration 25 mg / L.
Conclusion :Additionally the results show that the photocatalytic process using green iron nanoparticles can be used with a suitable function to removal of reactive red 198 from aqueous solutions.

کلیدواژه‌ها [English]

  • photocatalytic
  • Green iron nanoparticles
  • Reactive Red 198 dye
  • aqueous solutions
1. Dehvari, M., et al., Evaluation of maize tassel powder efficiency in removal of reactive red 198 dye from synthetic textile wastewater. 2013.

2.Mondal, S., Methods of dye removal from dye house effluent—an overview. Environmental Engineering Science, 2008. 25(3): p. 383-396.

3. Ozmen, E.Y., et al., Synthesis of β-cyclodextrin and starch based polymers for sorption of azo dyes from aqueous solutions. Bioresource Technology, 2008. 99(3): p. 526-531.

4. Crini, G., Non-conventional low-cost adsorbents for dye removal: a review. Bioresource technology, 2006. 97(9): p. 1061-1085.

5. Dehghani, M., et al., Optimization of the parameters influencing the photo-Fenton process for the decolorization of Reactive Red 198 (RR198). Jundishapur Journal of Health Sciences, 2015. 7(2).

6.Mahanta, D., et al., Adsorption of sulfonated dyes by polyaniline emeraldine salt and its kinetics. The Journal of Physical Chemistry B, 2008. 112(33): p. 10153-10157.

7.Verma, D.K. and R.M. Banik, Decolorization of triphenylmethane dyes using immobilized fungal biomass. Int J Res, 2013. 4: p. 1-12.

8.Lee, J.-W., et al., Evaluation of the performance of adsorption and coagulation processes for the maximum removal of reactive dyes. Dyes and pigments, 2006. 69(3): p. 196-203.

9.Daneshvar, N., et al., Electro-Fenton treatment of dye solution containing Orange II: Influence of operational parameters. Journal of Electroanalytical Chemistry, 2008. 615(2): p. 165-174.

10.Peng, Y., et al., NaNO2/FeCl3 catalyzed wet oxidation of the azo dye Acid Orange 7. Chemosphere, 2008. 71(5): p. 990-997.

11.Assadi, A., et al., Decolorization of direct poly azo dye with nanophotocatalytic UV/NiO process. International Journal of Environmental Health Engineering, 2012. 1(1): p. 31.

12. Moussavi, G. and M. Mahmoudi, Removal of azo and anthraquinone reactive dyes from industrial wastewaters using MgO nanoparticles. Journal of hazardous materials, 2009. 168(2-3): p. 806-812.

13. Galindo, C., P. Jacques, and A. Kalt, Photooxidation of the phenylazonaphthol AO20 on TiO2: kinetic and mechanistic investigations. Chemosphere, 2001. 45(6-7): p. 997-1005.

14.Daneshvar, N., et al., Photocatalytic degradation of the herbicide erioglaucine in the presence of nanosized titanium dioxide: comparison and modeling of reaction kinetics. Journal of Environmental Science and Health, Part B, 2006. 41(8): p. 1273-1290.

15. Khataee, A., M.-N. Pons, and O. Zahraa, Photocatalytic degradation of three azo dyes using immobilized TiO2 nanoparticles on glass plates activated by UV light irradiation: Influence of dye molecular structure. Journal of Hazardous Materials, 2009. 168(1): p. 451-457.

16.Gaya, U.I. and A.H. Abdullah, Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: a review of fundamentals, progress and problems. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2008. 9(1): p. 1-12.

17. Li, X., C. Fan, and Y. Sun, Enhancement of photocatalytic oxidation of humic acid in TiO2 suspensions by increasing cation strength. Chemosphere, 2002. 48(4): p. 453-460.

18. Hisaindee, S., M. Meetani, and M. Rauf, Application of LC-MS to the analysis of advanced oxidation process (AOP) degradation of dye products and reaction mechanisms. TrAC Trends in Analytical Chemistry, 2013. 49: p. 31-44.

19. An, S., et al., Enhancement removal of crystal violet dye using magnetic calcium ferrite nanoparticle: study in single-and binary-solute systems. Chemical Engineering Research and Design, 2015. 94: p. 726-735.

20. Huang, L., et al., Green synthesis of iron nanoparticles by various tea extracts: comparative study of the reactivity. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2014. 130: p. 295-301.

21.Prasad, K.S., P. Gandhi, and K. Selvaraj, Synthesis of green nano iron particles (GnIP) and their application in adsorptive removal of As (III) and As (V) from aqueous solution. Applied Surface Science, 2014. 317: p. 1052-1059.

22.Machado, S., et al., Green production of zero-valent iron nanoparticles using tree leaf extracts. Science of the Total Environment, 2013. 445: p. 1-8.

23. Weng, X., et al., Synthesis of iron-based nanoparticles by green tea extract and their degradation of malachite. Industrial Crops and Products, 2013. 51: p. 342-347.

24. Kumar, K.P., W. Paul, and C.P. Sharma, Green synthesis of gold nanoparticles with Zingiber officinale extract: characterization and blood compatibility. Process Biochemistry, 2011. 46(10): p. 2007-2013.

25.PourmortazaviS.M, et al., Procedure optimization for green synthesis of silver nanoparticles by aqueous extract of Eucalyptus oleosa. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2015. 136: p. 1249-1254.

26. Sh, E.O, El E, Fast and Biocompatible Synthesis of Silver Nanoparticles Using Thyme Leaf Strawberry Leaf and Evaluation of its Antimicrobial Activity. Journal of Applied Research in Chemistry, 2018. 11(4): p. 51-59.

27.Samadi Z, et al., Investigation of Photocatalytic Reduction of Cr (VI) from Aqueous Solutions by Using Green Iron Nanoparticles: A Laboratory Study. Journal of Rafsanjan University of Medical Sciences, 2017. 15(12): p. 1133-1146.

28.Shahwan T, et al., Green synthesis of iron nanoparticles and their application as a Fenton-like catalyst for the degradation of aqueous cationic and anionic dyes. Chemical Engineering Journal, 2011. 172(1): p. 258-266.

29.Tavosi F, et al., Green Synthesis of Iron Nano Particles Using Mentha longifolia L. Extract. Journal of Medicinal Plants, 2018. 2(66): p. 135-144.

30.Deniz F, Saygideger SD, Removal of a hazardous azo dye (Basic Red 46) from aqueous solution by princess tree leaf. Desalination, 2011. 268(1-3): p. 6-11.

31. Dianati Tilaki R, et al., Kinetics Study on Adsorption of Three Azo Dyes (Reactive Red 198, Cationic Red GTL 18 and Cationic Red GRL 46) by Zeolite Clinoptilolite. Journal of Mazandaran University of Medical Sciences, 2014. 24(118): p. 158-169.

32.Ahmadimoghadam M, et al., Efficiency Study on Nanophotocatalytic Degradation and Detoxification of CI direct blue 86 from Aquatic Solution Using UVA/TiO2 and UVA/ZnO. Journal of Mazandaran University of Medical Sciences, 2016. 26(143): p. 145-159.

33.Jorfi S, et al., Visible Light Photocatalytic Degradation of Azo Dye and a Real Textile Wastewater Using Mn, Mo, La/TiO2/AC Nanocomposite. Chemical and biochemical engineering quarterly, 2018. 32(2): p. 215-227.

34.Setarehshenas N, et al, Photocatalytic Degradation of Basic Red 46 Azo Dye using Activated Carbon-doped ZrO2/UV Process. Applied Chemistry, 2018. 13(48): p. 53-66.

35.Khodadadi M, et al., Synthesis and characterizations of FeNi3@ SiO2@ TiO2 nanocomposite and its application in photo-catalytic degradation of tetracycline in simulated wastewater. Journal of Molecular Liquids, 2018. 255: p. 224-232.

36. Kaur S, Singh V.TiO2 mediated photocatalytic degradation studies of Reactive Red 198 by UV irradiation. Journal of Hazardous Materials, 2007. 141(1): p. 230-236.

37. Armağan, B. and M. Turan, Equilibrium studies on the adsorption of reactive azo dyes into zeolite. Desalination, 2004. 170(1): p. 33-39.

38.Asvadi F., et al.Investigation of affecting operational parameters in photocatalytic degradation of Reactive Red 198 with TiO 2: optimization through response surface methodology. Advances in Environmental Technology, 2017. 2(4): p. 169-177.

39. Razali N.A. ,  Othman SA.Synthesis and Characterization of Nitrogen Doped with Titanium Dioxide at Different Calcination Temperature by using Sol-Gel Method. Journal of Science and Technology, 2017. 9(3).

40. Aghajari, N., et al. Photocatalytic removal of Reactive Red 198 from Aqueous Solution using titanium dioxide photocatalyst supported on Fe-ZSM-5 zeolite. Journal of Mazandaran University of Medical Sciences, 2017. 27(150): p. 137-157.

41.Malakootian M,  Dowlatshahi S, Hashemi Cholicheh M. Reviewing the photocatalytic processes efficiency with and without hydrogen peroxide in cyanide removal from aqueous solutions. Journal of Mazandaran University of Medical Sciences, 2013. 23(104): p. 69-78.

42. Eshaghi A, Hayeripour S,  Eshaghi A. Photocatalytic decolorization of reactive red 198 dye by a TiO 2–activated carbon nano-composite derived from the sol–gel method. Research on Chemical Intermediates, 2016. 42(3): p. 2461-2471.

43. Ma N, et al. Performing a microfiltration integrated with photocatalysis using an Ag-TiO2/HAP/Al2O3 composite membrane for water treatment: Evaluating effectiveness for humic acid removal and anti-fouling properties. Water research, 2010. 44(20): p. 6104-6114.

44. Cai Q , J. Hu. Decomposition of sulfamethoxazole and trimethoprim by continuous UVA/LED/TiO2 photocatalysis: decomposition pathways, residual antibacterial activity and toxicity. Journal of hazardous materials, 2017. 323: p. 527-536.

45. Akbari-Adergani B, et al. Removal of dibutyl phthalate from aqueous environments using a nanophotocatalytic Fe, Ag-ZnO/VIS-LED system: modeling and optimization. Environmental technology, 2018. 39(12): p. 1566-1576.

46. Mathumba P.  Nanostructured membranes embedded with hyperbranched polyethyleneimine (HPEI) hosts and titanium dioxide (TiO2) nanoparticles for water purification. 2016, University of Johannesburg.

47. Bayat Bidkopeh, R,  Ebrahimi M,  Keyvani B. Removal of 206 acid dye contaminated water by Bentonite / ZnFe2O4 nanofootcoatalyst in batch reactor using Taguchi test desig. Journal of Water and Wasrewater,, 2013. 24(3): p. 128-136.