بررسی عملکرد فرایند الکتروفنتون در حذف پنی سیلین G از محلول‌های آبی

نوع مقاله: مقالات پژوهشى اصیل کمی و کیفی

نویسندگان

1 مربی- عضو هیأت علمی گروه مهندسی بهداشت محیط، عضو مرکز تحقیقات عوامل اجتماعی مؤثر بر سلامت، دانشکده بهداشت، دانشگاه علوم پزشکی بیرجند،

2 دانشیار، مرکز تحقیقات عوامل اجتماعی موثر بر سلامت، دانشگاه علوم پزشکی بیرجند، بیرجند، ایران.

3 مربی- عضو هیأت علمی گروه مهندسی بهداشت محیط، عضو مرکز تحقیقات عوامل اجتماعی مؤثر بر سلامت، دانشکده بهداشت، دانشگاه علوم پزشکی بیرجند، بیرجند، ایران

10.22038/jreh.2020.41013.1309

چکیده

مقدمه: در سالهای اخیر نگرانی درمورد حضور طیف وسیعی از مواد دارویی از جمله آنتی بوتیکها در محیط‌های آبی افزایش یافته است. به‌طور معمول این مواد به دلیل ناکارآمدی تکنولوژی‌های متداول تصفیه فاضلاب، از مسیرهای مختلفی مانند رواناب کشاورزی، تخلیه مستقیم از تصفیه خانه‌های فاضلاب شهری، مواد دفعی انسان، دفع مستقیم زائدات پزشکی، صنعت و غیره وارد محیط‌های آبی می‌شوند. بنابراین در تحقیق حاضر کارایی حذف پنی‌سیلین G، با استفاده از فرآیند الکتروفنتون، از محلول‌های آبی، مورد بررسی قرار گرفته است.
روش بررسی: تحقیق حاضر در مقیاس آزمایشگاهی در مخزن شیشه‌ای به حجم cc 400 با استفاده از الکترودهای آهنی صورت گرفت.دستگاه مجهز به تنظیم‌کننده میزان جریان جهت تنظیم سریع متغیر بود. برق ورودی به دستگاه، جریان متناوب شهری می‌باشد. مخزن با آب سنتزی حاوی پنی‌سیلین G در غلظت‌های mg/L200-50 پر شد. درصد حذف آلاینده در پتانسیلV 26، شدت جریان 6/0-05/0آمپر، مدت‌زمان min 120-0، pH 12-3 و فاصله بین الکترودها در محدوده cm 4-1 بررسی شد.
یافته ها: بر اساس نتایج حاصله میزان حذف پنی‌سیلین G به پارامترهای مختلف بهره‌برداری از جمله pH ، دانسیته‌جریان الکتریکی ، زمان واکنش ، غلظت آنتی‌بیوتیک و فاصله بین الکترود بستگی دارد. شرایط بهینه بهره‌برداری pH معادل 3، دانسیته جریان الکتریکی برابر A 6/0، زمان واکنش min 20، غلظت آنتی بیوتیک mg/L 50 و فاصله بین الکترود cm1 با میزان غلظت پرواکسیدهیدروژن mmol 25 در فرایند الکتروفنتون حاصل شد.
نتیجه‌گیری: براساس نتایج حاصل از این تحقیق فرایند الکتروفنتون می‌تواند به عنوان روشی نسبتاً مناسب در حذف پنی-سیلین G از محیط‌های آبی مطرح گردد.

کلیدواژه‌ها


عنوان مقاله [English]

“Evaluation of the Efficiency of the Electrofenton Process in removal of penicillin G from aqueous solutions”

نویسندگان [English]

  • salehe salehnia 1
  • behnam barikbin 2
  • rasoul khosravi 3
1 MSc,Department of Health, Birjand University of Medical Sciences,birjand,iran,
2 Associate Professor, Social Determinates of health Research Center, Department of Environmental Health Engineering, Birjand University of Medical Sciences Birjand, Iran
3 MSc,Department of Health, Birjand University of Medical Sciences,birjand,iran,
چکیده [English]

Introduction :In recent years, concerns have been raised about the presence of a wide range of drug substances and antibiotics in aquatic environments. Usually these materials are due to the inefficiency of conventional wastewater treatment technologies, From various routes such as agricultural runoff, direct discharge from urban wastewater treatment plants, human waste products, direct disposal of medical waste, industry, etc. into aquatic environments. The present study aims at the removal of penicillin G through electrofenton process in the aqueous solution.
Methods : The present study was conducted on laboratory scale in tanks made of glass using iron electrodes with useful volume 400 cc. The device is equipped with a flow rate regulator and voltage regulator to control these variables. Urban alternate current forms the input to the devices. The tank was filled with synthetic penicillin G with a concentration of 50-200 mg/L. The removal of penicillin G at potential 26V, the intensity of the 0.05-0.6A, Time 0-120 min, pH: 3-12 and the distance between the electrodes was measured in the range of 1-4cm.
Results: The aim of present study was to the potential of the processes of electrofenton removal of penicillin G in aquatic environments. The results were pH of 3, the electric current density 0.6A, reaction time 20min, the concentration of antibiotic 50mg/l, and the distance between electrodes 1cm with concentration of H2O2 25mmol . in these circumstances, the results showed that electrocoagulation process is the ability to remove 100 percent of the pollutants.
Conclusion: The results of this study illustrate that electrofenton process with iron electrodes is cost-effective removal of organic compounds.

کلیدواژه‌ها [English]

  • electrofenton
  • penicillin G
  • iron electrode
  1. Salehnia S. Comparison between electro coagulation and electrofenton processes on removal of penicillin G from aqueous solutions . Birjand: University of Medical Sciences School of Health Department of Public Health/Environmental Health Engineering; 1394. 103p.
  2. Oksana G,Vimal K, Ganna F, Tomas R, Roman G. Seasonal changes in antibiotics, antidepressants/ psychiatric drugs, antihistamines and lipid regulators in a wastewater treatment plant. Chemosphere. 2014; 111: 418–426.
  3. I. Arslan A, Dogruel S, Baykal E, Gerone G. Combined chemical and biological oxidation of penicillin formulation effluent. Journal of Environmental Management. 2004; 73: 155–163.
  4. Zümriye A, Özlem T. Application of biosorption for penicillin G removal: comparison with activated carbon. Process Biochemistry. 2005; 40: 831–847.
  5. http://fa.wikipedia.org/wiki.
  6. Yasmine Ait O, Malika C, Abdeltif  A, Aicha B. Removal of tetracycline by electrocoagulation: Kinetic and isotherm modeling through adsorption. Journal of Environmental Chemical Engineering. 2014; 2: 177–184.
  7. Qian S, Jun H, Shubo D, Gang Y, Qing F. Occurrence and removal of pharmaceuticals, caffeine and DEET in wastewater treatment plants of Beijing, China. water research. 2010; 44: 417–426.
  8. - Yaal L, Hadas M, Ines Z, Dror A. Treating wastewater from a pharmaceutical formulation facility by biological process and ozone. water research. 2013; 47: 4349 - 4356.
  9. Daniel R .A, Klaus K, Ayrton F. M. Removal of dexamethasone from aqueous solution and hospital wastewater by electrocoagulation. Science of the Total Environment. 2013; 443:  351–357.
  10. Wang Ch,  Chou W, Chung M, Kuot Y. COD removal from real dyeing wastewater by electro-Fenton technology using an activated carbon fiber cathode, Desalination. 2010; 253: p. 129–134.
  11. . Oller , Malato S, Sanchez-Perez J A. Combination of Advanced Oxidation Processes and biological treatments for wastewater decontamination -A review, Science of the Total Environment. 2011; 409: 4141–4166.
  12. Panizza M، Cerisola G. Electro-Fenton degradation of synthetic dyes. Water Res 2009;43:339-344.
  13. Atmaca E. Treatment of landfill leachate by using electro-Fenton method. J Hazard Mater. 2009;163:109-114.
  14. Zorpas AA, Costa CN. Combination of fenton oxidation and composting for the treatment of the olive solid residue and the olive mile wastewater from the olive oil industry in Cyprus, Bioresour Technol  2010; 101(20); 7984-7.
  15. Zhuang L, zhou S, Yuan Y, Liu M, Wang Y. A novel bioelectro-fenton system for coupling anodic COD removal with cathodic dye degradation. Chem Engin J. 2010; 163(1-2): 160-3.
  16. Wu H, Wang S. Impacts of operating parameters on oxidation- reduction potential and pretreatment efficancy in the pretreatment of printing and dyeing wastwwater by fenton processes. J Hazard Mater.  2012; 243:86-94.
  17. Yang Y, Wang P, Shi S, Liu Y. Microwave enhanced fenton-like process for the treatment of high concentration pharmaceutical wastewater. J Hazard Mater.  2009; 168(1): 238-45.
  18. Ben W, Qiang Z, Pan X, Chen M. Removal of veterinary antibiotics from sequencing batch reactor (SBR) pretreated swine wastewater by Fenton's reagent. Water Research. 2009; 43: 4392-4402.
  19. Baqeri A, Mousavi GH, Khavanin A. Electerofenton process efficiency in industrial cleaners containing high concentrations of formaldehyde; Journal of Health and Environment, Journal of Environmental Health Science, Vol. 5, No. 2, 156-143, 1391. (Persian).
  20. Khandegar, V, Saroha A K. Electrochemical treatment of textile effluent containing Acid Red 131 dye. Journal of Hazardous, Toxic, and Radioactive Waste. 2013; (1)18: 38-44.
  21. Kobya  M, Demirbas E, Can O T, Bayramoglu M. Treatment of levafix orange  textile  dye  solution  by  electrocoagulation.  Journal  of Hazardous Materials. 2006; 132(2): 183-188.
  22. Merzouk  B , Zodi S, Potier  O, Lapicque F, Leclerc J P. Direct red 81 dye removal by a continuous flow electrocoagulation/flotation reactor. Separation and Purification Technology 2013; 108:215-222.
  23. Adhoum N. Treatment of Electroplating Wastewater Containing Cu2+, Zn2+and Cr(VI) by  Electrocoagulation. Journal of Hazardous Materials B 2004;112:207-213.
  24. Chaudhary A, Goswami N, Grimes N. Electrolytic Removal of Hexavalent Chromium from Aqueous Solution. Journal of Chemical Technology and Biotechnology. 2003;78:877-883.
  25. Lakshmipathiraj P Removal of Cr (VI) by Electrochemical Reduction Separation and Purification Technology. 2008;60:96-102.
  26. Krthikeyan S, Titus A, Gnanamani A, Mandal AB, Sekaran G. Treatment of textile wastewater by homogeneous and homogeneous fenton oxidation processes. Desalination  2011; 281: 438-45.
  27. Babuponnusami A, Muthukumar K. Advanced oxidation of phenol: A comparison between Fenton, electro-Fenton, sono-electro-Fenton and photo-electro-Fenton processes. Chemical Engineering Journal. 2012;183:1–9.
  28. Yuksel E, Eyvaz M, Gurbulak E. Electrochemical  treatment of colour index  reactive  orange  4 and textile wastewater by using  stainless  steel  and  iron electrodes. Environmental Progress & Sustainable Energy. 2011; 32(1): 60-68.
  29. Parsa JB, Vahidian H R, Soleymani AR, Abbasi M. Removal of Acid Brown 14 in aqueous media by electrocoagulation: Optimization parameters and minimizing of energy consumption. Desalination. 2011; 278(1): 295-302.
  30. Jamshidi N, Torabian A, Azimi AK, Nabi Bidhendi GR, Jafarzadeh MT. Investigation of Phenol removal in aqueous solutions using advanced photochemical oxidation (APO). J. of Water andWastewater. 2009; 4: 24-29.
  31. Yazdanbakhsh A, Sheykh Mohammadi A, Sardar M, Manshouri M. Investigation of combined process of coagulation and Fentonlikeadvanced oxidation to remove the antibioticclarithromycin COD synthetic wastewater.lorestan university of medical sciences. 2011; 13(1):11-9.
  32. Mondal B, Srivastava VC, Kushwaha J P, Bhatnagar R, Singh S, Mall ID. Parametric and multiple response optimization for the electrochemicaltreatment of textile printing dye-bath effluent. Separation and PurificationTechnology. 2013; 109: 135-143.
  33. Phalakornkule C, Polgumhang S, Tongdaung W, Karakat B, Nuyut T. Electrocoagulation of blue reactive, red disperse and mixed dyes, and application intreating textile effluent. Journal of Environmental Management. 2010; 91(4): 918-926.
  34. jafarzadeh N, Daneshvar N.Treatment of Textile Wastewater Containing Basic Dyes byElectrocoagulation Process.water and wastewater.2006 ;57:22-29.
18.   . Rahmani A, Shabanlu A, Mehralipour J, Mobarakian A.Electerophenton and  Electro coagulation with iron electrodes Electro efficiency process for the removal of phenol from aqueous solution; Sixteenth National Congress of Environmental Health, 1392.(Persian).