بررسی کارایی جاذب بیسموت اکسی یدید(BioI) در حذف رنگ متیلن بلو از محلول های آبی

نوع مقاله: مقالات پژوهشی

نویسندگان

1 علوم پزشکی گناباد

2 بهداشت محیط،دانشکده بهداشت، دانشگاه علوم پزشکی تهران

3 دانشگاه علوم پزشکی مشهد - دانشکده بهداشت - گروه مهندسی بهداشت محیط و حرفه ای

4 دانشجوی کارشناس ارشد مهندسی بهداشت محیط، دانشکده بهداشت ،دانشگاه علوم پزشکی گناباد

5 مهندسی بهداشت محیط، دانشکده بهداشت، دانشگاه علوم پزشکی گناباد، گناباد، ایران

چکیده

چکیده
مقدمه:
پسابهای رنگی حاصل از صنایع نساجی یکی از عظیم ترین منابع آلوده کننده ی محیط های آبی می باشند.یکی از رنگهای پرکاربرد در صنایع نساجی رنگ متیلن بلو می باشد.متیلن بلو که به دلیل آروماتیک بودن، اغلب سمی، سرطان زا، جهش زا و مقاوم به تجزیه بیولوژیکی است، اثرات مضری بر موجودات زنده در مدت زمان کوتاه مواجهه دارد. فرایند جذب سطحی در سال های اخیر توجهات زیادی را به خود جلب کرده است. لذا این مطالعه با هدف بررسی امکان استفاده از نانو ذرات بیسموت اکسی یدید درجذب رنگ متیلن بلو از فاضلاب سنتتیک انجام شد.
مواد و روش ها: مطالعه حاضر در مقیاس آزمایشگاهی روی نمونه های سنتیک رنگ در سیستم ناپیوسته انجام گرفت.اثر متغیرهای مهم در فرایند (pH، دز، زمان تماس و غلظت اولیه رنگ) و همچنین مطالعه ایزوترم و سنتیک فرایند مورد بررسی قرار گرفت. جاذب مورد استفاده بیسموت اکسی یدید بود که طبق استاندارد در آزمایشگاه تهیه گردید.
یافته ها : حداکثر راندمان حذف رنگ متیلن بلو از محلول در pH بهینه برابر 9، زمان تماس 30 دقیقه، دوز جاذب 3 گرم بر لیتر و غلظت اولیه 10 میلی گرم بر لیتر مشاهده شد تبعیت حذف متیلن بلو از مدل کنیتیکی شبه درجه 2 و مدل ایزوترم لانگمویر نشان داد مرحله جذب به عنوان مرحله کنترل کننده فرایند مطرح بود.
نتیجه گیری: نتایج آزمایشات نشان داد که بیسموت اکسی یدید پتانسیل بالایی جهت حذف مولکولهای رنگ متیلن بلو از نمونه های آب آلوده برخوردار است.

کلیدواژه‌ها


عنوان مقاله [English]

A survey of Bismuth oxide (BiOI) as an adsorbent in the removal of methylene blue from aqueous solutions

نویسندگان [English]

  • Mojtaba Afsharnia 1
  • Aliakbar Dehghan 2
  • Hosein Alidadi 3
  • Najmeh Afsharkohan 4
  • Sedigheh Majidian 5
1 Gonabad University of Medical Sciences
2 .Department of Environmental Health Engineering, School of Health Mashhad University of Medical Sciences, Mashhad, Iran
3 Department of Environmental Health Engineering, Social Determinants of Health Research Center, School of Health, Mashhad University of Medical Sciences, Mashhad, Iran
4 Student Research Committee, Department of Environmental Health Engineering, Gonabad University of Medical Sciences, Gonabad, Iran
5 environmental health department, health school, gonabad university medical science, Gonabad, Iran
چکیده [English]

Abstract

Background & Aim:
The colored waste from the textile industry is one of the most pollutants in the aquatic environment. One of the most widely used paints in the textile industry is methylene blue, which is often aromatic, often toxic, carcinogenic, mutated and resistant to biological degradation and has harmful effects on living organisms. The purpose of this study was to investigate the bismuth oxyiodide nanoparticles capability to absorb methylene blue from synthetic wastewater.
Materials &methods:
The present study was carried out in a laboratory scale in batch mode. The effects of variables affecting the process including pH, adsorbent dose, contact time and initial concentration of color, kinetic and adsorption isotherm were investigated.
Results:
The maximum removal efficiency of methylene blue from solutions was observed in optimal conditions as pH of 9, contact time of 30 minutes, absorbance dose of 3 g/L and initial concentration of 10 mg/L. Methylene blue adsorption compliance by BiOI from a pseudo-second kinetic model and Langmuir isotherm model shows that the type of reaction is chemical absorption.
Conclusion:
The results of the experiments showed that bismuth oxide has a high potential for removal of methylene blue molecules from contaminated wastewater.

کلیدواژه‌ها [English]

  • Key words: bismuth oxyiodide (BiOI
  • Methylene blue
  • Isotherm
  • kinetic

1.         Pei X, Li W, Deng F, Luo X, Li F, Liao L. Influence of the iodide source on the photocatalytic activity of bismuth oxyiodide. Journal of Advanced Oxidation Technologies. 2015;18(2):279-84.

2.         Al YasinSO, Khoshgoftar M, N M. A Comparative Study of Removal Efficiency for Methylene Blue Aqueous Solution Using Coral Limestone Granule and LECA Granule from of Synthetic Wastewater. Journal of Knowledge & Health. 2017;12(2):41-32.

3.         Salmani M RR, Danaie S, Soltanianzadeh Z. Evaluation of Adsorption Process in Dye Removal from Industrial Wastewater. 2015;14(3):72-60.

4.         Naddafi K, Nabizadeh Nodehi R, M. Jr. Removal of Reactive Blue 29 Dye from Water by Single-Wall Carbon Nanotubes. Iran J Health & Environ. 2010;3(4).

5.         MALAKOTIAN M, M N. Evaluating the Efficiency of Coagulation Process Compared to the Electrophoton Process In the removal of methylene blue from aqueous solutions using an iron electrode. Journal of Rafsanjan University of Medical Sciences. 2016;14(9):768-55.

6.         Ramavandi M, M L. The efficiency evaluation of activated carbon prepared from date stones for removal of methylene blue dye from aqueous solutions. rterly Journal of Sabzevar University of Medical Sciences. 2014;21(3):502-13.

7.         ZARE M, EMADI M, IRANPOUR M, R B. Determination of methylene blue removal from polluted water by corn cobbler as a cheap exhaust. New Materials Magazine. 2015;4(4):81-98.

8.         NAJAFPOUR A, DAVOUDI M, DEHGHAN A, S B. Evaluation of the effectiveness of bitter olive in removing methylene blue from synthetic sewage. Journal of Health. 2017;4(1):16-8.

9.         Zahedinia S, Shahbazi A, S H. Evaluate the performance of Populus nigra sawdust in the removal of methylene blue from aqueous solutions: isotherms, kinetics and thermodynamics studies. Modares Civil Engineering Journal (MCEJ)  2016;16(2).

10.       SALASHOR Z, SHAHBAZI A, A B. Synthesis and correction of nano-cavity silica surface with mono and dendrimer groups Amin. Water and Wastewater. 2017(1):28-19.

11.       Qadri S, Ganoe A, Haik Y. Removal and recovery of acridine orange from solutions by use of magnetic nanoparticles. Journal of hazardous materials. 2009;169(1-3):318-23.

12.       Amouei A, Asgharnia HA, Karimian K, Mahdavi Y, Balarak D, SM G. Optimization of Dye Reactive Orange 16 (RO16) Adsorption by Modified Sunflower Stem Using Response Surface Method from Aqueous Solutions. J RafsanjanUniv Med Sci. 2015;14(10):826-13.

13.       Khan MN, Wahab MF. Characterization of chemically modified corncobs and its application in the removal of metal ions from aqueous solution. Journal of hazardous materials. 2007;141(1):237-44.

14.       Paulino AT, Guilherme MR, Reis AV, Campese GM, Muniz EC, Nozaki J. Removal of methylene blue dye from an aqueous media using superabsorbent hydrogel supported on modified polysaccharide. Journal of Colloid and Interface Science. 2006;301(1):55-62.

15.       Zazouli MA, Balarak D, Y M. Application of Canola Residuals in Absorption of Reactive Red 198(RR198) Dye from Aqueous Solutions. Journal of Neyshabur University of Medical Sciences. 2014;2(3):56-66.

16.       Bulut Y, Aydın H. A kinetics and thermodynamics study of methylene blue adsorption on wheat shells. Desalination. 2006;194(1-3):259-67.

17.       Montoya-Zamora J, Martínez-de la Cruz A, Cuéllar EL. Enhanced photocatalytic activity of BiOI synthesized in presence of EDTA. Journal of the Taiwan Institute of Chemical Engineers. 2017;75:307-16.

18.       Shan L-w, He L-q, Suriyaprakash J, Yang L-x. Photoelectrochemical (PEC) water splitting of BiOI {001} nanosheets synthesized by a simple chemical transformation. Journal of Alloys and Compounds. 2016;665:158-64.

19.       Yang C, Li F, Zhang M, Li T, Cao W. Preparation and first-principles study for electronic structures of BiOI/BiOCl composites with highly improved photocatalytic and adsorption performances. Journal of Molecular Catalysis A: Chemical. 2016;423:1-11.

20.       Dehghan A, Dehghani MH, Nabizadeh R, Ramezanian N, Alimohammadi M, Najafpoor AA. Adsorption and visible-light photocatalytic degradation of tetracycline hydrochloride from aqueous solutions using 3D hierarchical mesoporous BiOI: Synthesis and characterization, process optimization, adsorption and degradation modeling. Chemical Engineering Research and Design. 2018;129:217-30.

21.       Ramavandi B1 LM. Efficiency of Shrimp Shell to Remove Methylene Blue from Aqueous Solutions Health Journal of Health 2014;5(4):25-310.

22.       Malakootian M, Rezaee  SH, AR N. Removal of Methylene Blue Dye from Aqueous Solutions Using Activated Fly Ash from Zarand Power Plant in Kerman. Water and Wastewater. 2014;2(4):62-71.

23.       Ramachandran P, Vairamuthu R, Ponnusamy S. Adsorption isotherms, kinetics, thermodynamics and desorption studies of reactive Orange16 on activated carbon derived from Ananas comosus (L.) carbon. Journal of Engineering and Applied Sciences. 2011;6(11):15-26.

24.       Nourmoradi H, Z N. Investigation on the Efficacy of Activated Carbon Modified with Zinc Oxide Nanoparticles to Remove Methylene Blue Dye from Synthetic Wastewater: Kinetic and Isotherm Study. J Health Syst Res. 2015;11(2):382-97.

25.       Bazrafshan E KMF. Evaluation of color removal of Methylene blue from aqueous solutions using plant stem ash of Persica. J North Khorasan Uni Med Sci 2012;4:523-32.

26.       Khaled A, El Nemr A, El-Sikaily A, Abdelwahab O. Removal of Direct N Blue-106 from artificial textile dye effluent using activated carbon from orange peel: adsorption isotherm and kinetic studies. Journal of Hazardous Materials. 2009;165(1-3):100-10.

27.       Ncibi M, Mahjoub B, Seffen M. Adsorptive removal of textile reactive dye using Posidonia oceanica (L.) fibrous biomass. International Journal of Environmental Science & Technology. 2007;4(4):433-40.

28.       Das SK, Bhowal J, Das AR, Guha AK. Adsorption behavior of rhodamine B on rhizopus o ryzae biomass. Langmuir. 2006;22(17):7265-72.

29.       Anbia M, Hariri SA. Removal of methylene blue from aqueous solution using nanoporous SBA-3. Desalination. 2010 261(1-2):61-6.

30.       Ertaş M, Acemioğlu B, Alma MH, Usta M. Removal of methylene blue from aqueous solution using cotton stalk, cotton waste and cotton dust. Journal of Hazardous Materials. 2010;183(1-3):421-7.

31.       Ling CM, Mohamed AR, Bhatia S. Photodegradation of methylene blue dye in aqueous stream using immobilized TiO2 film catalyst: synthesis, characterization and activity studies. Jurnal Teknologi. 2004;40:91-103.

32.       Bazrafshan E, Kord Mostafapour. Evaluation of color removal of Methylene blue from aqueous solutions using plant stem ash of Persica JOurnal of North Khorasan University of medical science. 2012;4(4):532-23.

33.       Ardekani PS KH, Ghaedi M, Asfaram A, Purkait MK. Ultrasonic assisted removal of methylene blue on ultrasonically synthesized zinc hydroxide nanoparticles on activated carbon prepared from wood of cherry tree: Experimental design methodology and artificial neural network. Journal of Molecular Liquids. 2017;229:114-24.

34.       Darvishicheshmehsoltani R, Noorimotlagh Z, Shahriyar S, Nourmoradi H, Rahmati Z, S N. Application of Milk Vetch Wood as Adsorbent of  Methylene Blue Dye from Aqueous Solution Scientific Journal of Ilam University of Medical Sciences. 2015;24(4):41-52.

35.       Uzun A. Kinetics of the adsorption of reactive dyes by chitosan Dyes.Pigments 2006;70:83-76.

36.       Özacar M, Şengil İA. A two stage batch adsorber design for methylene blue removal to minimize contact time. Journal of environmental management. 2006;80(4):372-9.

37.       Ozer C, Imamoglu M, Turhan Y, Boysan F. Removal of methylene blue from aqueous solutions using phosphoric acid activated carbon produced from hazelnut husks. Toxicological & Environmental Chemistry. 2012;94(7):1283-93.