Authors

1 Master's student of Environment, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran

2 Department of Environment, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran

3 Department of Environment, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran.

Abstract

Background and Objective: The toxicity and persistence of heavy metals in the environment have necessitated usingtrees as biological indicators. This study aimed to evaluate the concentrations of heavy metals, including Pb, Zn, and Cd, in the leaves of two commonly cultivated ornamental plant species, Bougainvillea glabra (paper flower) and Cassia floribunda (burhan flower), known for their adaptability in urban environments, within the green spaces of Mahshahr Port in 2024.

Materials and Methods: This descriptive-analytical research involved the collection of leaf samples fromBougainvillea glabra and Cassia floribunda trees across 13 regions of Mahshahr City, with three replications in June 2024. Chemical digestion was performed using the Jackson (1980) method, which involves acid digestion of plant material to release heavy metals for analysis. Heavy metal concentrations were measured using a Perkin Elmer 900T atomic absorption spectrophotometer (USA).

Results: The mean concentrations of Cd, Pb, and Zn in the leaves of Bougainvillea glabra were 0.108, 0.154, and 1.705 mg/kg, respectively. In contrast, the concentrations in Cassia floribunda were 0.120, 0.184, and 1.996 mg/kg, respectively. Statistically, Cd (P=0.008) and Pb (P=0.035) concentrations were significantly higher in Cassia floribundathan in Bougainvillea glabra (P<0.05). However, the Zn levels in Cassia floribundawere slightly higher but not statistically significant (P=0.844, P>0.05). The detected concentrations of Cd, Pb, and Zn in both species were below permissible limits set by the World Health Organization (WHO), indicating minimal contamination.

Conclusion: The concentrations of Cd, Pb, and Zn in the leaves of Cassia floribunda and Bougainvillea glabra were within normal limits and below the standard permissible levels. However, based on the findings, these two species are unsuitable for phytoremediation of heavy metals. These results highlight the broader potential of ornamental plants as cost-effective tools for urban environmental management and pollution assessment, though further studies are needed to identify more effective species for phytoremediation purposes.
 
Open Access Policy: This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/

Keywords

  1. Narendrula-Kotha, R., Theriault, G., Mehes-Smith, M., Kalubi, K. and Nkongolo, K., 2020. Metal toxicity and resistance in plants and microorganisms in terrestrial ecosystems. Reviews of Environmental Contamination and Toxicology, 249: 1-27. https://doi.org/10.1007/398_2018_22 PMid:30725190
  2. Uchimiya, M., Bannon, D., Nakanishi, H., McBride, M.B., Williams, M.A. and Yoshihara, T., 2020. Chemical speciation, plant uptake, and toxicity of heavy metals in agricultural soils. Journal of Agricultural and Food Chemistry, 68(46):12856-12869. https://doi.org/10.1021/acs.jafc.0c00183 PMid:32155055
  3. Xu, J., Liu, C., Hsu, P.C., Zhao, J., Wu, T., Tang, J., Liu, K. and Cui, Y., 2019. Remediation of heavy metal contaminated soil by asymmetrical alternating current electrochemistry. Nature communications, 10(1): 2440. https://doi.org/10.1038/s41467-019-10472-x PMid:31164649 PMCid:PMC6547649
  4. Rastegari Mehr, M., Shakeri, A., Amjadian, K., Khalilzadeh Poshtegal, M. and Sharifi, R., 2021. Bioavailability, distribution and health risk assessment of arsenic and heavy metals (HMs) in agricultural soils of Kermanshah Province, west of Iran. Journal of Environmental Health Science and Engineering, 19: 107-120. https://doi.org/10.1007/s40201-020-00585-7 PMid:34150222 PMCid:PMC8172719
  5. Okpara, E.C., Fayemi, O.E., Wojuola, O.B., Onwudiwe, D.C. and Ebenso, E.E., 2022. Electrochemical detection of selected heavy metals in water: a case study of African experiences. RSC advances, 12(40): 26319-26361. https://doi.org/10.1039/D2RA02733J PMid:36275116 PMCid:PMC9475415
  6. Srivastava, N.K. and Majumder, C.B., 2008. Novel biofiltration methods for the treatment of heavy metals from industrial wastewater. Journal of hazardous materials, 151(1): 1-8. https://doi.org/10.1016/j.jhazmat.2007.09.101 PMid:17997034
  7. Angulo-Bejarano, P.I., Puente-Rivera, J. and Cruz-Ortega, R., 2021. Metal and metalloid toxicity in plants: An overview on molecular aspects. Plants, 10(4): 635. https://doi.org/10.3390/plants10040635 PMid:33801570 PMCid:PMC8066251
  8. Fryzova, R., Pohanka, M., Martinkova, P., Cihlarova, H., Brtnicky, M., Hladky, J. and Kynicky, J., 2018. Oxidative stress and heavy metals in plants. Reviews of environmental contamination and toxicology volume 245: 129-156. https://doi.org/10.1007/398_2017_7 PMid:29032515
  9. Reeves, R.D., 1999. Phytoremediation of toxic metals: using plants to clean up the environment. (No Title), p.193.
  10. Reeves, R.D., Baker, A.J., Jaffre, T., Erskine, P.D., Echevarria, G. and van Der Ent, A., 2018. A global database for plants that hyperaccumulate metal and metalloid trace elements. New Phytologist, 218(2): 407-411. https://doi.org/10.1111/nph.14907 PMid:29139134
  11. Yang, D., Chu, Z., Zheng, R., Wei, W., Feng, X., Zhang, J., Li, C., Zhang, Z. and Chen, H., 2021. Remediation of Cu-polluted soil with analcime synthesized from engineering abandoned soils through green chemistry approaches. Journal of Hazardous Materials, 406: 124673. https://doi.org/10.1016/j.jhazmat.2020.124673 PMid:33310322
  12. Zheng, R., Feng, X., Zou, W., Wang, R., Yang, D., Wei, W., Li, S. and Chen, H., 2021. Converting loess into zeolite for heavy metal polluted soil remediation based on "soil for soil-remediation" strategy. Journal of Hazardous Materials, 412: 125199. https://doi.org/10.1016/j.jhazmat.2021.125199 PMid:33556854
  13. Rahman, Z. and Singh, V.P., 2019. The relative impact of toxic heavy metals (THMs) (arsenic (As), cadmium (Cd), chromium (Cr)(VI), mercury (Hg), and lead (Pb)) on the total environment: an overview. Environmental monitoring and assessment, 191: 1-21. https://doi.org/10.1007/s10661-019-7528-7 PMid:31177337
  14. Von Uexkull, H.R. and Mutert, E., 1995. Global extent, development and economic impact of acid soils. Plant and soil, 171: 1-15. https://doi.org/10.1007/BF00009558
  15. Velusamy, S., Roy, A., Sundaram, S. and Kumar Mallick, T., 2021. A review on heavy metal ions and containing dyes removal through graphene oxide‐based adsorption strategies for textile wastewater treatment. The Chemical Record, 21(7), pp.1570-1610. https://doi.org/10.1002/tcr.202000153 PMid:33539046
  16. Carolin, C.F., Kumar, P.S., Saravanan, A., Joshiba, G.J. and Naushad, M., 2017. Efficient techniques for the removal of toxic heavy metals from aquatic environment: A review. Journal of environmental chemical engineering, 5(3): 2782-2799. https://doi.org/10.1016/j.jece.2017.05.029
  17. Ali, F., Kazi, T.G., Afridi, H.I. and Baig, J.A., 2018. Exposure of cadmium via smoking and drinking water on zinc levels of biological samples of malnutrition pregnant women: A prospective cohort study. Environmental toxicology and pharmacology, 63: 48-54. https://doi.org/10.1016/j.etap.2018.08.013 PMid:30145445
  18. Garcia-Leston, J., Mendez, J., Pasaro, E. and Laffon, B., 2010. Genotoxic effects of lead: an updated review. Environment international, 36(6): 623-636. https://doi.org/10.1016/j.envint.2010.04.011 PMid:20466424
  19. Assi, M.A., Hezmee, M.N.M., Sabri, M.Y.M. and Rajion, M.A., 2016. The detrimental effects of lead on human and animal health. Veterinary world, 9(6): 660. https://doi.org/10.14202/vetworld.2016.660-671 PMid:27397992 PMCid:PMC4937060
  20. Carocci, A., Catalano, A., Lauria, G., Sinicropi, M.S. and Genchi, G., 2016. Lead toxicity, antioxidant defense and environment. Reviews of environmental contamination and toxicology, pp.45-67.https://doi.org/10.1007/398_2015_5003 PMid:26670034
  21. Levin, R., Vieira, C.L.Z., Rosenbaum, M.H., Bischoff, K., Mordarski, D.C. and Brown, M.J., 2021. The urban lead (Pb) burden in humans, animals and the natural environment. Environmental research, 193: 110377.https://doi.org/10.1016/j.envres.2020.110377 PMid:33129862 PMCid:PMC8812512
  22. Frassinetti, S., Bronzetti, G.L., Caltavuturo, L., Cini, M. and Della Croce, C., 2006. The role of zinc in life: a review. Journal of environmental pathology, toxicology and oncology, 25(3). https://doi.org/10.1615/JEnvironPatholToxicolOncol.v25.i3.40 PMid:17073562
  23. Alengebawy, A., Abdelkhalek, S.T., Qureshi, S.R. and Wang, M.Q., 2021. Heavy metals and pesticides toxicity in agricultural soil and plants: Ecological risks and human health implications. Toxics, 9(3): 42. https://doi.org/10.3390/toxics9030042 PMid:33668829 PMCid:PMC7996329
  24. Sharma, R.K. and Agrawal, M., 2005. Biological effects of heavy metals: an overview. Journal of environmental Biology, 26(2): 301-313.
  25. Sahoo, J.K., Somu, P., Narayanasamy, S., Sahoo, S.K., Lee, Y.R., Baalakrishnan, D.R., NV, R.R. and Rajendiran, S., 2022. Heavy metal ions and dyes removal from aqueous solution using aloevera-based biosorbent: A systematic review. Environmental Research, 216(Pt 4): 114669-114669. https://doi.org/10.1016/j.envres.2022.114669 PMid:36404520
  26. Ornelas Garcia, I.G., Guerrero Barrera, A.L., Avelar Gonzalez, F.J., Chavez Vela, N.A. and Gutierrez Montiel, D., 2023. Bougainvillea glabra Choisy (Nyctinaginacea): review of phytochemistry and antimicrobial potential. Frontiers in Chemistry, 11: 1276514. https://doi.org/10.3389/fchem.2023.1276514 PMid:37927559 PMCid:PMC10620508
  27. Alemayehu, G., Abegaz, B., Snatzke, G. and Duddeck, H., 1988. Bianthraquinones and a spermidine alkaloid from Cassia floribunda. Phytochemistry, 27(10): 3255-3258. https://doi.org/10.1016/0031-9422(88)80037-2
  28. Oladeji, O.S., Adelowo, F.E. and Oluyori, A.P., 2021. The genus Senna (Fabaceae): A review on its traditional uses, botany, phytochemistry, pharmacology and toxicology. South African Journal of Botany, 138: 1-32. https://doi.org/10.1016/j.sajb.2020.11.017
  29. Carter, S., Fisher, A., Gibson, B., Marshall, J., Russell, B. and Whiteside, I., 2017. Atomic spectrometry update: review of advances in the analysis of metals, chemicals and materials. Journal of Analytical Atomic Spectrometry, 32(11): 2068-2117. https://doi.org/10.1039/C7JA90046E
  30. Alloway, B. J. 1995. Heavy metal in soil. New York: John Wiley and sons. Inc; 2001. P.20-28.
  31. Kabata-Pendias A, Pendias H. 2011. Trace elements in soils and plants: CRC press Boca Raton. https://doi.org/10.1201/b10158
  32. Mulenga, C., Phiri, D., Ortega-Rodriguez, D.R. and Meincken, M., 2023. Bioaccumulation of potentially toxic elements by indigenous and exotic trees growing around a copper leaching plant in Mufulira, Zambia. Environmental Systems Research, 12(1): 26. https://doi.org/10.1186/s40068-023-00310-x
  33. Sun, S., Zuo, J., Jiang, W., Liu, D., and Li, M. 2015. Cadmium effects on mineral accumulation, antioxidant defence system and gas exchange in cucumber. Zemdirbyste Agriculture, 102: 193-200. https://doi.org/10.13080/z-a.2015.102.025
  34. Ati, E.M., Jazar, Z.H., Ajmi, R.N. and Latif, A.S., 2023. Indication Cadmium in leaf Eucalyptus camaldulensis plant at Samarra city/Iraq. Texas Journal of Agriculture and Biological Sciences, 14: 11-14.
  35. Mirdadi, M. and Nohegar, A., 2022. Investigating the Effect of Air Pollution on the Accumulation of Heavy Metals in Plant Species in Arid and Desert Areas (Case Study: Acacia, Prosopis and Ziziphus C, in Kahouristan, Hormozgan Province). Environmental Erosion Research Journal, 12(2), pp.1-18. [In Persian].
  36. Fakhri, A., Valadan Zoej, M.J., Safdarinezhad, A. and Yavari, P., 2022. Estimation of heavy metal concentrations (Cd and Pb) in plant leaves using optimal spectral indicators and artificial neural networks. Environmental Science and Pollution Research, 29(50): 76119-76134. https://doi.org/10.1007/s11356-022-21216-8 PMid:35666414
  37. Demirezen, D. and Aksoy, A., 2004. Accumulation of heavy metal in Typha angustifolia (L) and Potamogeton pectinatus(L) living in Sultan Marsh (Kayseri and Turkey). Chemosphere, 56: 685-696. https://doi.org/10.1016/j.chemosphere.2004.04.011 PMid:15234165
  38. Balestrasse, K.B., Benavides, M.P., Gallego, S.M. and Tomaro, M.L., 2003. Effect of cadmium stress on nitrogen metabolism in nodules and roots of soybean plants. Functional plant biology, 30(1): 57-64. https://doi.org/10.1071/FP02074 PMid:32688992
  39. Mohanpuria, P., Rana, N.K. and Yadav, S.K., 2007. Cadmium induced oxidative stress influence on glutathione metabolic genes of Camellia sinensis (L.) O. Kuntze. Environmental Toxicology: An International Journal, 22(4): 368-374. https://doi.org/10.1002/tox.20273 PMid:17607728
  40. Ahmad, I., Akhtar, M.J., Zahir, Z.A. and Jamil, A., 2012. Effect of cadmium on seed germination and seedling growth of four wheat (Triticum aestivum L.) cultivars. Pak. J. Bot, 44(5): 1569-1574.
  41. Rahman, S.U., Qin, A., Zain, M., Mushtaq, Z., Mehmood, F., Riaz, L., Naveed, S., Ansari, M.J., Saeed, M., Ahmad, I. and Shehzad, M. 2024. Pb uptake, accumulation, and translocation in plants: Plant physiological, biochemical, and molecular response: A review. Heliyon. 10 (6): e27724. https://doi.org/10.1016/j.heliyon.2024.e27724 PMid:38500979 PMCid:PMC10945279
  42. Collin, S., Baskar, A., Geevarghese, D.M., Ali, M.N.V.S., Bahubali, P., Choudhary, R., Lvov, V., Tovar, G.I., Senatov, F., Koppala, S. and Swamiappan, S., 2022. Bioaccumulation of lead (Pb) and its effects in plants: A review. Journal of Hazardous Materials Letters, 3: 100064. https://doi.org/10.1016/j.hazl.2022.100064
  43. Pour Gholam Khabaz A, Mohammadi Ruzbahani, M., 2024. The study of the traceability of lead heavy metal in the leaves of eucalyptus (Eucalyptus microtheca) and Burhan (Albizia lebbeck) trees in Shush city. Journal of Research in Environmental Health. 2024;9(4):403-16. [In Persian].
  44. Tabibian S, Bidarigh S, Torabian SY. Investigation on the adsorption of heavy metal in lead in a plane species in traffic areas in Rasht. Human & Environment. 2019;17(4):39-46. [In Persian].
  45. Kaur, H. and Garg, N., 2021. Zinc toxicity in plants: a review. Planta, 253(6): 129. https://doi.org/10.1007/s00425-021-03642-z PMid:34043068
  46. Balafrej, H., Bogusz, D., Triqui, Z.E.A., Guedira, A., Bendaou, N., Smouni, A. and Fahr, M., 2020. Zinc hyperaccumulation in plants: A review. Plants, 9(5): 562. https://doi.org/10.3390/plants9050562 PMid:32365483 PMCid:PMC7284839
  47. Mostafavi, F., Bahmani, M., Zamani, A.R., and Jafari, A., 2022. Potential uptake of heavy metals by some tree and shrub species used in Shahrekord landscape. Journal of Environmental Science and Technology, 22 (4): 135-148. [In Persian].
  48. Liu, D.Y., Liu, Y.M., Zhang, W., Chen, X.P. and Zou, C.Q., 2019. Zinc uptake, translocation and remobilization in winter wheat as affected by soil application of Zn fertilizer. Frontiers in Plant Science, 10: 426. https://doi.org/10.3389/fpls.2019.00426 PMid:31057568 PMCid:PMC6477674
  49. Arpanaei, A., Attarroshan, S., Sabzalipour, S. and Arpanaei, I., 2021. Bioaccumulation of some heavy metals (copper, Nickel, and lead) and air pollution tolerance index of Prosopis juliflora and Conocarpus erectus species in Mahshahr, Iran. Iranian Journal of Health and Environment, 13 (4): 747-766. [In Persian].
  50. Nazari Alamdarloo, B., Mosleh Arany, A., Shojaee Barjoee, S., Azimzadeh, H., and Kiani B. 2020. Air pollution tolerance index and heavy metals (Pb and Cd) bioaccumulation in selected plant species (trees, shrubs and herbs) in high-traffic areas of Yazd city Iranian Journal of Health and Environment, 13 (2): 299-318. [In Persian].
  51. Rafati, M., Mohammadi Roozbahani, M. and Naseri Monfared, H., 2021. Accumulation of heavy metals (lead and nickel) by the soil and leaves of Albizia lebbeck and Conocarpus erectus from the city of Ahwaz. Forest and Wood Products, 73(4), pp.379-387. [In Persian].
  52. Lorestani, B., Cheraghi, M. and Soheil, S.A., 2023. Effect of traffic density on heavy metal content of soils and vegetation cover along roadsides, case study: City of Hamedan. Journal of Environmental Health Enginering, 10(2), pp.100-113. [In Persian]. https://doi.org/10.61186/jehe.10.2.100
  53. Khoramnejadian, S. and Omrani, M., 2023. Identifying and measuring the amount of heavy metals in soil and ornamental plants in high-traffic squares of Mashhad (Case study: Squares of Revolution, Anti, Flake Ab, Taghi Abad). Journal of Environmental Science Studies, 8(1), pp.6119-6126. [In Persian].
  54. Ghasemphour, A., Arbabi, A., Ebadati, N., Adibi, F., Rostam pishe, M. 2023. Analysis and explanation sprawl in industrial cities (Case study: Bandar Mahshahr). Applied Research Journal of Geographical Science, 23 (69) : 479-496. [In Persian].
  55. Hu, Y., Wang, D., Wei, L., Zhang, X. and Song, B., 2014. Bioaccumulation of heavy metals in plant leaves from Yan׳ an city of the Loess Plateau, China. Ecotoxicology and environmental safety, 110, pp.82-88. https://doi.org/10.1016/j.ecoenv.2014.08.021 PMid:25199586
  56. Brooks RR, Chambers MF, Nicks LJ, Robinson BH. 1998. Phytomining. Trends in Plant Science, 3: 359-362. https://doi.org/10.1016/S1360-1385(98)01283-7
  57. Carrier, P., Baryla, A. and Havaux, M., 2003. Cadmium distribution and microlocalization in oilseed rape (Brassica napus) after long-term growth on cadmium-contaminated soil. Planta, 216: 939-950. https://doi.org/10.1007/s00425-002-0947-6 PMid:12687361
  58. Cosio, C, Martinoia, E. and Keller, C. 2004. Hyperaccumulation of cadmium and zinc in Thlaspi caerulescens and Arabidopsis halleri at the leaf cellular level. Plant Physiology, 134: 716-725. https://doi.org/10.1104/pp.103.031948 PMid:14730081 PMCid:PMC344547
  59. Kulshreshtha K., Rai A., Mohanty C.S., Roy R.K. and Sharma S. 2009. Particulate pollution mitigating ability of some plant species. International Journal of Environmental Research, 3 (1): 137-142.
  60. Huang, L., Li, Y., Zhao, M., Chao, Y., Qiu, R., Yang, Y. and Wang, S., 2018. Potential of Cassia alata L. coupled with biochar for heavy metal stabilization in multi-metal mine tailings. International Journal of Environmental Research and Public Health, 15(3): 494. https://doi.org/10.3390/ijerph15030494 PMid:29534505 PMCid:PMC5877039
  61. Chaplygin, V., Mandzhieva, S., Litvinov, Y., Kravtsova, N., Sherstnev, A., Chernikova, N. and Deryabkina, I., 2020. Zinc and cadmium accumulation in different parts of wild plants of the Asteraceae family and Triticum aestivum. E3S Web of Conferences, 169: 0-5. https://doi.org/10.1051/e3sconf/202016901003
  62. Matakala, N., Chirwa, P.W., Mwamba, T.M. and Syampungani, S., 2023. Species richness and phytoremediation potential of mine wastelands-native trees across the Zambian Copperbelt Region. Heliyon, 9(3): e13585. https://doi.org/10.1016/j.heliyon.2023.e13585 PMid:36879977 PMCid:PMC9984791