Document Type : Research article

Authors

1 PhD candidate, Department of Natural Resources, Isfahan University of Technology, Isfahan, Iran.

2 PhD, Department of Natural Resources and Environment, Science and Research Branch, Islamic Azad University, Tehran, Iran.

3 M.sc, Department of Natural Resources and Environment, Science and Research Branch, Islamic Azad University, Tehran, Iran.

4 PhD candidate, Department of Natural Resources, Isfahan University of Technology, Isfahan 84156-83111, Iran

Abstract

Background and Objective: Today, many people are exposed to air pollution, a phenomenon that threatens human health in various ways. Air pollution is defined as the presence of a pollutant at concentrations exceeding permissible limits in the natural environment. The primary objective of this study is to examine the effect of stack height on the concentration of pollutants emitted from an industrial stack.

Materials and Methods: In this descriptive-analytical study, the AERMOD software was employed to model the dispersion of SO₂ emissions at four different stack heights (63, 97, 103, and 110 meters). The input data included: technical specifications of the stack (flow rate, temperature, and exit gas velocity), hourly meteorological data from the Shiraz synoptic station (2021-2022), and a 90-meter resolution digital elevation model of the study area. The modeling domain was divided into a 300×300 meter grid within a 10 km radius of the stack.

Results: The findings demonstrated that increasing the stack height from 63 to 110 meters (a %42 increase) resulted in a %32 reduction in SO₂ concentrations. At the 63-meter height, the maximum 1-hour SO₂ concentration reached 263 μg/m³ (exceeding the 196 μg/m³ standard limit), while at 110 meters, this value decreased to 178 μg/m³. The minimum effective height for compliance with air quality standards was determined to be 103 meters.
 
Open Access Policy: This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/



Conclusion: This research demonstrates that modifying stack height significantly affects both the concentration and spatial distribution of pollutants. Future studies should investigate the combined effects of other physical stack parameters to develop more comprehensive emission control strategies.

Keywords

  1. Azmoun M, Mohammadnejad M. Assessing the impact of industrial areas on urban air pollution (case study: Tabriz metropolis). Quarterly Journal of Sustainable Urban and Regional Development Studies 2013; 4(4): 66-54. (Persian)
  2. Makhdoom M. The Foundation of Land Planning. 13th ed. Tehran: Tehran University Press.; 2012. P. 213-276. (Persian)
  3. Shahpari S, Eversole R. Planning to ‘Hear the Farmer’s Voice’: an Agent-Based Modelling Approach to Agricultural Land Use Planning. Appl. Spatial Analysis 2024; 17:138–115. Doi:10.1007/s12061-023-09538-7.
  4. WHO global air quality guidelines: Particulate matter (PM₂.₅ and PM₁₀), ozone, nitrogen dioxide, sulfur dioxide and carbon monoxide, World Health Organization. 2022; [20 screens] Availabel at: https://www.who.int/publications/i/item/9789240034228. Accessed April 3, 2025.
  5. United States Environmental Protection Agency, Air pollution modeling. 2023; [6 screens] Availabel at: https://www.epa.gov/air-research/air-pollution-modeling. Accessed April 6, 2025.
  6. Abbaspour M. Air Pollution Modeling. 1th ed. Tehran: Sharif University of Technology Scientific Publishing Institute; 2011. P. 200-450. (Persian)
  7. Gronoff G, Arras P, Baraka S, Bell J, Cessateur G, Cohen O, Moore B. Atmospheric escape processes and planetary atmospheric evolution. Journal of Geophysical Research: Space Physics 2020; 125(8): 39-27. Doi:10.1029/2019JA027639.
  8. Rawan M, Madadi H,Sabzqabaei G. Assessing the impact of hospital sites on sulfur dioxide and nitrogen dioxide gas pollutants from the Abadan Oil Refinery using the CALPUFF model in 2018: A descriptive study. Scientific Journal of Rafsanjan University of Medical Sciences 2019; 19(10): 1088-1071. (Persian) Doi: 10.29252/jrums.19.10.1071.
  9. Peykanpour Fard R, Moradi H, Lotfi A, Pourmanafi S. Advancing the mapping of optimal land use structure in industrialized areas: incorporating AERMOD modeling and MCE approach. GeoJournal 2023; 88:1995–1979. Doi:10.1007/s10708-022-10716-2.
  10. Kalhor M, Qale-Asgari S, Bozorgi M. Performance of AERMET Preprocessor in Calculating Boundary Layer Parameters and Investigating Its Effect on Carbon Monoxide Concentration Outputs in the AERMOD Model in Comparison with Upper Atmosphere Data. Quarterly Journal of Health and Environment 2018; 11(3): 376-365. (Persian)
  11. Gargiulo M, Chiodi A, De Miglio, R, Simoes S, Long G, Pollard M, Gouveia JP, Giannakidis G. An integrated planning framework for the development of sustainable and resilient cities–the case of the InSMART project. Procedia engineering 2017; 198: 453-444. Doi:10.1016/j.proeng.2017.07.099.
  12. Saeedi A. Structural-Functional Dynamics: An Alternative Approach in Spatial Planning. Quarterly Journal of Spatial Economics and Rural Development 2012; 1(1): 18-1. (Persian)
  13. Arefiev N, Terleev V, Badenko V. GIS-based fuzzy method for urban planning. Procedia Engineering 2015; 117(1): 44-39. Doi: 10.1016/j.proeng.2015.08.121.
  14. Khavarian-Garmsir A, Rezaei M. Selection of appropriate locations for industrial areas using GIS-fuzzy methods. A case study of Yazd Township, Iran. Journal of Settlements and Spatial Planning 2015; 6(1): 25-19.‏ Doi:10.1016/j.seps.2020.100860.
  15. kuo Y, Lu S, Tzeng G, Lin Y, Huang Y. Using fuzzy integral approach to enhance site selection assessment–a case study of the optoelectronics industry. Procedia Computer Science 2013; 17: 313-306. Doi:10.1016/j.procs.2013.05.040.
  16. Al-Maliki M, Al-Easawi N. The Efficiency of the Eucalyptus sp. Plant in Absorbing Pollutants Results from Vehicle Exhausts in the Baghdad City. Diyala Agricultural Sciences Journal 2024;16(1): 136-125. Doi:/10.52951/dasj.24160111.
  17. Najafi E, Shali M. The Place of Environmental Studies in Iranian Spatial Planning - A Case Study: Regional Physical Plan and Provincial Planning Program. "Sepehr" Scientific-Research Quarterly Journal of Geographic Information 2003; 32(128): 174-159. (Persian) Doi:10.22131/sepehr.2023.1986896.2942.
  18. Yazdani M, Farzaneh Sadat Zaranji Z. Optimal Location of Physical Expansion of Sardasht City Using Hybrid Methods and Fuzzy Network Transfer Process of Spatial Information System. Quarterly Journal of Disaster Prevention and Management Knowledge 2003; 13(4): 489-479. (Persian)
  19. El Baroudy A. Mapping and evaluating land suitability using a GIS-based model. Catena 2016; 140: 140-96. Doi:10.1016/j.catena.2015.12.010.
  20. Faraji A, Sahneh F. Evaluating the Ecological Potential of Land in Golestan Province for the Development of Agricultural Land Uses with a Land Management Approach. Scientific Journal "Land Management" 2010; 12(2): 253-247. (Persian) Doi:10.22059/jtcp.2020.294811.670053.
  21. Shokrian F, Soleimani K. Land use changes based on satellite images in the Haraz Plain. Iranian Journal of Remote Sensing and GIS 2014; 16(1): 128-113. (Persian) Doi:10.48308/gisj.2023.232979.1176
  22. Memarbashi E, Azadi H, Barati A, Mohajeri F, Passel S, Witlox F. Land-use suitability in Northeast Iran: application of AHP-GIS hybrid model. ISPRS International Journal of Geo-Information 2017; 6(12): 410- 396. Doi:10.3390/ijgi6120396.
  23. Akomolafe O, Olorunsogo T, Anyanwu E, Osasona F, Ogugua J, Daraojimba O. Air quality and public health: a review of urban pollution sources and mitigation measures. Engineering Science & Technology Journal 2024; 5(2): 271-259. Doi:10.51594/estj.v5i2.751.
  24. Sarwar M, Maqbool A. Causes and control measures of urban air pollution in China. Environment & Ecosystem Science (EES) 2019; 3(1): 36-35.
  25. Peykanpourfard R, Moradi H, Lotfi A, Pourmanafi S. Integrating air pollution mapping into land use planning. Research sample: Mobarakeh County. Geography and Environmental Planning 2012; 32(2): 66-45. (Persian) Doi: 10.22108/GEP.2021.126855.1393.
  26. Xia H, Yuan S, Prishchepov A. Spatial-temporal heterogeneity of ecosystem service interactions and their social-ecological drivers: Implications for spatial planning and management. Resources, Conservation and Recycling 2023; 189: 76-67.‏ Doi:10.1016/j.resconrec.2022.106767.
  27. Statistical Yearbook of Isfahan Province. Fars Province Management and Planning Organization (Deputy of Statistics and Information). 2016; [77 screens] Availabel at: https://amar.org.ir/salnamehamari/agentType/ViewType/PropertyTypeID/2095. April 10, 2025.
  28. Hoffmann, B. Air pollution in cities: Urban and transport planning determinants and health in cities. In Integrating Human Health into Urban and Transport Planning 2018; 40: 441-425. Doi:10.1007/978-3-319-74983-9-21.
  29. Shaikh K, Imran U, Khan A, Khokhar W, Bakhsh H. Health risk assessment of emissions from brick kilns in Tando Hyder, Sindh, Pakistan using the AERMOD dispersion model. SN Applied Sciences 2020; 2: 11-1. Doi:10.1007/s42452-020-3089-1.
  30. Taherpour Mansour M, Kalantari A. Investigating the social processes of environmental pollution and agricultural activities (an analysis on the normalization of the consequences of chemicals in agriculture). Society and Environment 2014; 1(1): 19-1. (Persian) Doi:10.22080/jsn.2024.4945.
  31. Ahmadi Moghadam E, Tondro H, Zarinpour M, Fakhreddin V. The function of spatial planning in economic defense with emphasis on population. Strategic Defense Studies 2013; 22(96): 46-25. (Persian)
  32. Wang X, Manning W, Feng Z, Zhu Y. Ground-level ozone in China: distribution and effects on crop yields. Environmental Pollution 2007; 147(2): 400-394.‏ Doi:10.1016/j.envpol.2006.05.006.
  33. Zhang Q, Wang K. Evaluating production risks for wheat producers in Beijing. China Agricultural Economic Review 2010; 2(2): 211-200. Doi:10.1108/17561371011044306.
  34. Wei J, Guo X, Marinova D, Fan J. Industrial SO2 pollution and agricultural losses in China: evidence from heavy air polluters. Journal of Cleaner Production 2014; 64: 413-404. Doi:10.1016/j.jclepro.2013.10.027.
  35. Bergstra A, Brunekreef B, Burdorf A. The effect of industry-related air pollution on lung function and respiratory symptoms in school children. Environmental Health 2018; 17(1): 9-1. Doi:10.1016/j.envres.2019.108547.
  36. Peykanpourfard R, Peykanpourfard P, Hadian-Qahdrijani H. Investigation and quantification of air pollution distribution from industrial chimneys using AERMOD software in the southwest of Bandar Abbas city. Journal of Research in Environmental Health 2023; 9(3): 337-325. (Persian) Doi: 10.22038/jreh.2023.66934.1536.
  37. Bayat R, Ashrafi K, Motlagh M, Hassanvand M, Daroudi R, Fink G, Künzli N. Health impact and related cost of ambient air pollution in Tehran. Environmental research 2019; 176: 12-1.