Document Type : Narrative and integrative review

Authors

1 Assistant Professor, Department of Environmental Health Engineering, School of Health, Mazandaran University of Medical Sciences, Sari, Iran

2 PhD Student of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran

3 Student Research Committee, School of Health, Mazandaran University of Medical Sciences, Sari, Iran

Abstract

Background and purpose: Dengue fever is a viral disease transmitted by arthropods. Given its significance in society's health and environmental sanitation's impact on its outbreak, it is important to increase awareness, monitoring, and prevention of this disease. Due to insufficient information in this field, this review article aims to provide insights into the factors influencing the spread of dengue fever.

Materials and Methods: The current review was conducted by searching the Web of Science, Google Scholar, PubMed, and Scopus databases using the keywords "Dengue fever," "environmental sanitation," "Aedes mosquito," "Drainage of water reservoirs," and "Waste Management" and articles published between 2000 and 2023 were reviewed and analyzed.

Results: The findings of the study indicated that changes in environmental improvement factors affect the spread and prevalence of dengue fever. Additionally, the presence of stagnant water in ponds and pits, along with the accumulation of waste materials such as cans, plastic containers, and especially worn tires, has been identified as factors that increase the population of Aedes mosquito larvae. The study also determined that implementing measures such as emptying and weekly washing water tanks, as well as establishing a waste management program, can effectively control this disease.

Conclusion: The implementation of environmental sanitation measures in waste management systems, sewage collection, drainage, and water storage in reservoirs is an effective strategy for reducing the population of dengue carriers, and consequently, mitigating the spread of the disease.
 
Open Access Policy: This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/

Keywords

  1. Herrero-Uribe L. Viruses, definitions and reality. Revista de biologia tropical. 2011; 59(3): 993-8. https://doi.org/10.15517/rbt.v0i0.3372 PMid:22017106.
  2. Gelderblom HR. Structure and classification of viruses. 4, editor1996.
  3. Williams DT, Mackenzie JS, Bingham J. Flaviviruses. Diseases of swine2019. p. 530-43. https://doi.org/10.1002/9781119350927.ch33.
  4. Lescar J, Luo D, Xu T, Sampath A, Lim SP, Canard B, et al. Towards the design of antiviral inhibitors against flaviviruses: the case for the multifunctional NS3 protein from Dengue virus as a target. Antiviral research. 2008; 80(2): 94-101. https://doi.org/10.1016/j.antiviral.2008.07.001 PMid:18674567.
  5. Solomon T, Mallewa M. Dengue and other emerging flaviviruses. Journal of Infection. 2001; 42(2): 104-15. https://doi.org/10.1053/jinf.2001.0802 PMid:11531316.
  6. Ebrahimi M, Abadi A, Bashizadeh-Fakhar H, Fahimi E. Dengue Fever in Iran: A Case Report. Zahedan Journal of Research in Medical Sciences. 2016; 18(12): e9953. )persian) https://doi.org/10.17795/zjrms-9953.
  7. Rahman MS, Mehejabin F, Rahman MA, Rashid R. A case-control study to determine the risk factors of dengue fever in Chattogram, Bangladesh. Public Health in Practice. 2022; 4: 100288. https://doi.org/10.1016/j.puhip.2022. PMid:36570397 PMCid:PMC9773045.
  8. Mangwana S. Dengue viremia in blood donors in Northern India: Challenges of emerging dengue outbreaks to blood transfusion safety. Asian Journal of Transfusion Science. 2015; 9(2): 177. https://doi.org/10.4103/0973-6247.154253 PMid:26420940 PMCid:PMC4562141.
  9. Lubis FA, Siregar PA, Salamudin S. The Conditions Environmental Sanitation, 3M Behavior, and The House Indexwith The Event Of Dengue Dengue Fever (DHF). International Archives of Medical Sciences and Public Health. 2021; 2(1).
  10. Rajapakse S, Rodrigo C, Rajapakse A. Treatment of dengue fever. Infection and drug resistance. 2012; 5: 103. https://doi.org/10.2147/IDR.S22613 PMid:22870039 PMCid:PMC3411372.
  11. Buhler C, Winkler V, Runge-Ranzinger S, Boyce R, Horstick O. Environmental methods for dengue vector control–A systematic review and meta-analysis. PLoS neglected tropical diseases. 2019; 13(7): e0007420. https://doi.org/10.1371/journal.pntd. PMid:31295250 PMCid:PMC6650086.
  12. Mahmud MAF, Mutalip MHA, Muhammad EN, Yoep N, Hashim MH, Paiwai F, et al. Environmental management for dengue control: a systematic review protocol. BMJ open. 2019; 9(5): e026101. https://doi.org/10.1136/bmjopen-2018- PMid:31097485 PMCid:PMC6530300.
  13. Ayuningtyas KD, Rahardjo SS, Murti B. Risk factors of dengue fever: Application of precede–proceed model. Journal of Epidemiology and Public Health. 2019; 4(1): 37-46. https://doi.org/10.26911/jepublichealth.2019.04.01.05.
  14. Setyadi AW, Yunita A, Muhibuddin N. The Relationship of Environmental Sanitation and Family Attitudes with Events of Dengue Hemorrhagic Fever (DHF) in Working Areas UPTD Public Health Centre Bendo Kediri District. Journal for Quality in Public Health. 2021; 4(2): 211-8. https://doi.org/10.30994/jqph.v4i2.210.
  15. Parkinson J. Drainage and stormwater management strategies for low-income urban communities. Environment and urbanization. 2003; 15(2): 115-26. https://doi.org/10.1177/095624780301500203.
  16. Abeyewickreme W, Wickremasinghe A, Karunatilake K, Sommerfeld J, Axel K. Community mobilization and household level waste management for dengue vector control in Gampaha district of Sri Lanka; an intervention study. Pathogens and global health. 2012; 106(8): 479-87. https://doi.org/10.1179/2047773212Y.0000000060 PMid:23318240 PMCid:PMC3541909.
  17. Padmanabha H, Soto E, Mosquera M, Lord C, Lounibos L. Ecological links between water storage behaviors and Aedes aegypti production: implications for dengue vector control in variable climates. Ecohealth. 2010; 7: 78-90. https://doi.org/10.1007/s10393-010-0301-6 PMid:20358255.
  18. Barrera R, Amador M, Clark GG. Ecological factors influencing Aedes aegypti (Diptera: Culicidae) productivity in artificial containers in Salinas, Puerto Rico. Journal of medical entomology. 2006; 43(3): 484-92. https://doi.org/10.1093/jmedent/43.3.484 PMid:16739405.
  19. Samuel PP, Thenmozhi V, Nagaraj J, Kumar TD, Tyagi B. Dengue vectors prevalence and the related risk factors involved in the transmission of dengue in Thiruvananthapuram district, Kerala, South India. Journal of vector borne diseases. 2014; 51(4): 313. https://doi.org/10.4103/0972-9062.147886 PMid:25540964
  20. Thammapalo S, Chongsuvivatwong V, Geater A, Dueravee M. Environmental factors and incidence of dengue fever and dengue haemorrhagic fever in an urban area, Southern Thailand. Epidemiology & Infection. 2008; 136(1): 135-43. https://doi.org/10.1017/S0950268807008126 PMid:17359563 PMCid:PMC2870760.
  21. Hayes JM, García-Rivera E, Flores-Reyna R, Suárez-Rangel G, Rodríguez-Mata T, Coto-Portillo R, et al. Risk factors for infection during a severe dengue outbreak in El Salvador in 2000. The American journal of tropical medicine and hygiene. 2003; 69(6): 629-33. https://doi.org/10.4269/ajtmh.2003.69.629 PMid:14740880.
  22. Siregar FA, Abdullah MR, Omar J, Sarumpaet SM, Supriyadi T, Makmur T, et al. Social and environmental determinants of dengue infection risk in North Sumatera Province, Indonesia. 2015; 8(2): 23-35. https://doi.org/10.3923/aje.2015.23.35.
  23. Suwannapong N, Tipayamongkholgul M, Bhumiratana A, Boonshuyar C, Howteerakul N, Poolthin S. Effect of community participation on household environment to mitigate dengue transmission in Thailand. Tropical Biomedicine. 2014; 31(1): 149-58.
  24. Van Benthem BH, Vanwambeke SO, Khantikul N, Burghoorn-Maas C, Panart K, Oskam L, et al. Spatial patterns of and risk factors for seropositivity for dengue infection. The American journal of tropical medicine and hygiene. 2005; 72(2): 201-8. . https://doi.org/10.4269/ajtmh.2005.72.201 PMid:15741558.
  25. Udayanga L, Gunathilaka N, Iqbal MCM, Lakmal K, Amarasinghe US, Abeyewickreme W. Comprehensive evaluation of demographic, socio-economic and other associated risk factors affecting the occurrence of dengue incidence among Colombo and Kandy Districts of Sri Lanka: a cross-sectional study. Parasites & vectors. 2018; 11(1): 1-18. https://doi.org/0.1186/s13071-018-3060-9 PMid:30143051 PMCid:PMC6109346.
  26. Spiegel JM, Bonet M, Ibarra AM, Pagliccia N, Ouellette V, Yassi A. Social and environmental determinants of Aedes aegypti infestation in Central Havana: results of a case–control study nested in an integrated dengue surveillance programme in Cuba. Tropical Medicine & International Health. 2007; 12(4): 503-10. https://doi.org/10.1111/j.365-3156.2007.01818.x PMid:17445141.
  27. Strickman D, Kittayapong P. Dengue and its vectors in Thailand: calculated transmission risk from total pupal counts of Aedes aegypti and association of wing-length measurements with aspects of the larval habitat. Am J Trop Med Hyg. 2003; 68(2): 209-17. https://doi.org/10.4269/ajtmh.2003.68.209 PMid:12641413.
  28. Tran HP, Adams J, Jeffery JA, Nguyen YT, Vu NS, Kutcher SC, et al. Householder perspectives and preferences on water storage and use, with reference to dengue, in the Mekong Delta, southern Vietnam. International health. 2010; 2(2): 136-42. https://doi.org/10.1016/j.inhe.2009.12.007 PMid:24037472.
  29. Mahardika R. Relationship Between Health Behavior and the Event of Dengue Heavenly Fever (Dhf). Jurnal EduHealth. 2021; 12(1): 15-26. https://doi.org/10.54209/jurnaleduhealth.v12i1.21.
  30. Baba M, Talle M. The effect of climate on dengue virus infections in Nigeria. New York Science Journal. 2011; 4(1): 28-33.
  31. Hiscox A, Kaye A, Vongphayloth K, Banks I, Piffer M, Khammanithong P, et al. Risk factors for the presence of Aedes aegypti and Aedes albopictus in domestic water-holding containers in areas impacted by the Nam Theun 2 hydroelectric project, Laos. The American journal of tropical medicine and hygiene. 2013; 88(6): 1070. https://doi.org/10.4269/ajtmh.12-0623 PMid:23458958 PMCid:PMC3752805.
  32. Kholedi A, Balubaid O, Milaat W, Kabbash I, Ibrahim A. Factors associated with the spread of dengue fever in Jeddah Governorate, Saudi Arabia. EMHJ-Eastern Mediterranean Health Journal. 2012; 18(1): 15-23. https://doi.org/10.26719/2012.18.1.15 PMid:22360006.
  33. Brunkard JM, López JLR, Ramirez J, Cifuentes E, Rothenberg SJ, Hunsperger EA, et al. Dengue fever seroprevalence and risk factors, Texas–Mexico border, 2004. Emerging infectious diseases. 2007; 13(10): 1477. https://doi.org/10.3201/eid1310.061586 PMid:18257990 PMCid:PMC2851499.
  34. Morales-Pérez A, Nava-Aguilera E, Balanzar-Martínez A, Cortés-Guzmán AJ, Gasga-Salinas D, Rodríguez-Ramos IE, et al. Aedes aegypti breeding ecology in Guerrero: cross-sectional study of mosquito breeding sites from the baseline for the Camino Verde trial in Mexico. BMC public health. 2017; 17(1): 61-70. . https://doi.org/10.1186/s12889-017-4293-9 PMid:28699559 PMCid:PMC5506586
  35. Zellweger RM, Cano J, Mangeas M, Taglioni F, Mercier A, Despinoy M, et al. Socioeconomic and environmental determinants of dengue transmission in an urban setting: An ecological study in Nouméa, New Caledonia. PLoS neglected tropical diseases. 2017; 11(4): e0005471. https://doi.org/10.1371/journal.pntd. PMid:28369149 PMCid:PMC5395238.
  36. Dieng H, Ahmad AH, Mahyoub JA, Turkistani AM, Mesed H, Koshike S, et al. Household survey of container–breeding mosquitoes and climatic factors influencing the prevalence of Aedes aegypti (Diptera: Culicidae) in Makkah City, Saudi Arabia. Asian Pacific journal of tropical biomedicine. 2012; 2(11): 849-57. https://doi.org/10.1016/S2221-1691(12)60242-1 PMid:23569860.
  37. Khon S. The public demand for a dengue fever vaccine: A contingent valuation survey in Phnom Penh, Cambodia. 2020; 10(6): 129-38. https://doi.org/10.32479/ijefi.10426.
  38. Knudsen AB, Slooff R. Vector-borne disease problems in rapid urbanization: new approaches to vector control. Bulletin of the World Health Organization. 1992; 70(1): 1.
  39. Abdel-Shafy HI, Mansour MS. Solid waste issue: Sources, composition, disposal, recycling, and valorization. Egyptian journal of petroleum. 2018; 27(4): 1275-90. https://doi.org/10.016/j.ejpe.2018.07.003.
  40. Banerjee S, Aditya G, Saha GK. Household disposables as breeding habitats of dengue vectors: linking wastes and public health. Waste management. 2013; 33(1): 233-9. https://doi.org/10.1016/j.wasman.2012.09.013 PMid:23107350.
  41. Chakrabarti S, Majumder A, Chakrabarti S. Public-community participation in household waste management in India: An operational approach. Habitat International. 2009; 33(1): 125-30. https://doi.org/10.1016/j.habitatint.2008.05.009.
  42. Gupta S, Mohan K, Prasad R, Gupta S, Kansal A. Solid waste management in India: options and opportunities. Resources, conservation and recycling. 1998; 24(2): 137-54. https://doi.org/10.1016/S0921-3449(98)00033-0.
  43. Hamer G. Solid waste treatment and disposal: effects on public health and environmental safety. Biotechnology advances. 2003; 22(1-2): 71-9. https://doi.org/10.1016/j.biotechadv.2003.08.007 PMid:14623044.
  44. Kumar S, Mukherjee S, Chakrabarti T, Devotta S. Hazardous waste management system in India: an overview. Critical reviews in environmental science and technology. 2007; 38(1): 43-71. https://doi.org/10.1080/10643380701590356.
  45. Nath K. Home hygiene and environmental sanitation: a country situation analysis for India. International Journal of Environmental Health Research. 2003; 13(1): 19-28. https://doi.org/10.1080/0960312031000102778 PMid:12775376.
  46. Sujauddin M, Huda SM, Hoque AR. Household solid waste characteristics and management in Chittagong, Bangladesh. Waste management. 2008; 28(9): 1688-95. https://doi.org/10.016/j.wasman.2007.06.013 PMid:17845843.
  47. Nor Faiza M, Hassan NA, Mohammad Farhan R, Edre M, Rus R. Solid Waste: Its Implication for Health and Risk of Vector-Borne Diseases. Journal of Wastes and Biomass Management (JWBM). 2019; 1(2): 14-7. https://doi.org/0.26480/jwbm.02.2019.14.17.
  48. Stewart Ibarra AM, Luzadis VA, Borbor Cordova MJ, Silva M, Ordoñez T, Beltran Ayala E, et al. A social-ecological analysis of community perceptions of dengue fever and Aedes aegypti in Machala, Ecuador. BMC public health. 2014; 14(1): 1-12. https://doi.org/0.1186/471-2458-14-1135 PMid:25370883 PMCid:PMC4240812.
  49. Heukelbach J, De Oliveira FAS, Kerr‐Pontes LRS, Feldmeier H. Risk factors associated with an outbreak of dengue fever in a favela in Fortaleza, north‐east Brazil. Tropical Medicine & International Health. 2001; 6(8): 635-42. https://doi.org/10.1046/j.365-3156.2001.00762.x PMid:11555429.
  50. Chan EYY, Sham TST, Shahzada TS, Dubois C, Huang Z, Liu S, et al. Narrative review on health-edrm primary prevention measures for vector-borne diseases. International journal of environmental research and public health. 2020; 17(16): 5981. https://doi.org/10.3390/ijerph17165981 PMid:32824754 PMCid:PMC7459832.
  51. Kusumawathie P, Fernando W. Anopheles maculatus (Theobald) and Anopheles elegans (James) breeding in water storage containers in Kandy, Sri Lanka. Ceylon J Med Sci. 2002; 45(2): 71-6. https://doi.org/10.4038/cjms.v45i2.852.
  52. Kusumawathie P, Fernando W. Breeding habitats of Aedes aegypti linnacus and Ae. albopictus skuse in a dengue transmission area in Kandy, Sri Lanka. 2003; 46: 51-60. https://doi.org/10.4038/cjms.v46i2.829.
  53. Barrera R, Amador M, Clark GG. Use of the pupal survey technique for measuring Aedes aegypti (Diptera: Culicidae) productivity in Puerto Rico. The American journal of tropical medicine and hygiene. 2006; 74(2): 290-302. https://doi.org/10.4269/ajtmh.2006.74.290 PMid:16474086.
  54. Hammond SN, Gordon AL, Lugo EdC, Moreno G, Kuan GM, López MM, et al. Characterization of Aedes aegypti (Diptera: Culcidae) production sites in urban Nicaragua. Journal of medical entomology. 2007; 44(5): 851-60. https://doi.org/10.1093/jmedent/44.5.851 PMid:17915519.
  55. Morrison AC, Gray K, Getis A, Astete H, Sihuincha M, Focks D, et al. Temporal and geographic patterns of Aedes aegypti (Diptera: Culicidae) production in Iquitos, Peru. Journal of medical entomology. 2004; 41(6): 1123-42. https://doi.org/10.603/0022-2585-41.6.1123 PMid:15605653.
  56. Grisales N, Poupardin R, Gomez S, Fonseca-Gonzalez I, Ranson H, Lenhart A. Temephos resistance in Aedes aegypti in Colombia compromises dengue vector control. PLoS neglected tropical diseases. 2013; 7(9): e2438. https://doi.org/10.1371/journal.pntd.0002438 PMid:24069492 PMCid:PMC3777894.
  57. Seng CM, Setha T, Nealon J, Socheat D, Chantha N, Nathan MB. Community-based use of the larvivorous fish Poecilia reticulata to control the dengue vector Aedes aegypti in domestic water storage containers in rural Cambodia. Journal of Vector Ecology. 2008; 33(1): 139-44. https://doi.org/10.3376/1081-710(2008)33[139:cuotlf]2.0.co;2 PMid:18697316.